Iris Recognition Using Textural Edgeness Features

  • Saiyed Umer
  • Bibhas Chandra Dhara
  • Bhabatosh Chanda
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 43)

Abstract

A method for feature extraction from an iris image based on the concept of textural edgeness is presented in this paper. Here for authentication purpose we have used two textural edgeness features namely: (1) a modified version of Gray Level Auto Correlation (GLAC) and (2) Scale Invariant Feature transform (SIFT) descriptors over dense grids in the image domain. Extensive experimental results using MMU1 and IITD iris databases demonstrate the effectiveness of the proposed system.

Keywords

Biometric Iris classification HOG SIFT GLAC 

References

  1. 1.
    Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., Nakajima, H.: An efficient iris recognition algorithm using phase-based image matching. In: ICIP, vol. 2, p. II–49, IEEE (2005)Google Scholar
  2. 2.
    Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)CrossRefGoogle Scholar
  3. 3.
    Daugman, J.: The importance of being random: statistical principles of iris recognition. PR 36(2), 279–291 (2003)Google Scholar
  4. 4.
    Daugman, J.: How iris recognition works. CSVT, IEEE Trans. 14(1), 21–30 (2004)Google Scholar
  5. 5.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: a survey. CVIU, 110(2), 281–307 (2008)Google Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV. 60(2):91–110 (2004)Google Scholar
  8. 8.
    Kobayashi, T., Otsu, N.: Image feature extraction using gradient local auto-correlations. In: ECCV, Springer, pp. 346–358 (2008)Google Scholar
  9. 9.
    Alonso-Fernandez, F., Tome-Gonzalez, P., Ruiz-Albacete, V., Ortega-Garcia, J.: Iris recognition based on sift features. In BIdS, pp. 1–8 IEEE (2009)Google Scholar
  10. 10.
    Yang, G., Pang, S., Yin, Y., Li, Y., Li, X.: Sift based iris recognition with normalization and enhancement. IJMLC 4(4), 401–407 (2013)Google Scholar
  11. 11.
    Belcher, C., Yingzi, D.: Region-based sift approach to iris recognition. Opt. Lasers Eng. 47(1), 139–147 (2009)CrossRefGoogle Scholar
  12. 12.
    Mehrotra, H., Badrinath, G.S., Majhi, B., Gupta, P.: An efficient iris recognition using local feature descriptor. In ICIP, IEEE, pp. 1957–1960, (2009)Google Scholar
  13. 13.
    Tan, C.-W., Kumar, A.: Human identification from at-a-distance images by simultaneously exploiting iris and periocular features. In: ICPR, IEEE, pp. 553–556. (2012)Google Scholar
  14. 14.
    Mehrotra, H., Majhi, B., Sa, P.K.: Unconstrained iris recognition using f-sift. In: ICICS, IEEE, pp. 1–5, (2011)Google Scholar
  15. 15.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. IJCV 62(1–2), 61–81 (2005)CrossRefGoogle Scholar
  16. 16.
    Sundaram, R.M., Dhara, B.C., Chanda, B.: A fast method for iris localization. In: EAIT, IEEE, pp. 89–92 (2011)Google Scholar
  17. 17.
    Masek et al. Recognition of human iris patterns for biometric identification. PhD thesis, Master’s thesis, University of Western Australia (2003)Google Scholar
  18. 18.
    Ma, L., Wang, Y., Tan, T.: Iris recognition using circular symmetric filters. In: ICPR, IEEE vol. 2, pp. 414–417 (2002)Google Scholar
  19. 19.
    Yoon, S., Choi, S.-S., Cha, S.-H., Lee, Y., Tappert, C.C.: On the individuality of the iris biometric. In Image analysis and recognition, pp. 1118–1124 Springer (2005)Google Scholar
  20. 20.
    Multimedia university iris database [online]. Available:http://pesona.mmu.edu.my/ ccteo/
  21. 21.
    Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable personal authentication. PR 43(3), 1016–1026 (2010)MATHGoogle Scholar
  22. 22.
    Chang, C.-C., Lin, C.-: Libsvm: a library for support vector machines. TIST 2(3), 27 (2011)CrossRefGoogle Scholar
  23. 23.
    Masood, K., Javed, M.Y., Basit, A.: Iris recognition using wavelet. In ICET, pp. 253–256. IEEE (2007)Google Scholar
  24. 24.
    Rahulkar, A.D., Holambe, R.S.: lf-iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n: A postclassifier. IFS. IEEE Trans. 7(1), 230–240 (2012)Google Scholar
  25. 25.
    Harjoko, A., Hartati, S., Dwiyasa, H.: A method for iris recognition based on 1d coiflet wavelet. World Acad. Sci. Eng. Technol. 56(24), 126–129 (2009)Google Scholar
  26. 26.
    Zhou, Y., Kumar, A.: Personal identification from iris images using localized radon transform. In ICPR, pp. 2840–2843, IEEE (2010)Google Scholar
  27. 27.
    Elgamal, M., Nasser, A.: An efficient feature extraction method for iris recognition based on wavelet transformation. Int. J. Comput. Inf. Technol. 2(03), 521–527 (2013)Google Scholar
  28. 28.
    Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: The relation between the roc curve and the cmc. In AIAT, pp. 15–20 IEEE (2005)Google Scholar
  29. 29.
    Fawcett, T.: An introduction to roc analysis. PRL 27(8), 861–874 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Saiyed Umer
    • 1
  • Bibhas Chandra Dhara
    • 2
  • Bhabatosh Chanda
    • 1
  1. 1.Electronics and Communication Sciences UnitIndian Statistical InstituteBaranagarIndia
  2. 2.Department of Information TechnologyJadavpur UniversityKolkataIndia

Personalised recommendations