Optimal Structure Determination of Microstrip Patch Antenna for Satellite Communication

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 44)


Microstrip Antenna design has experienced more development in the past period of years and still is subjected to more development. There are different kind of microstrip antenna which can be used for many handheld devices and in the communication devices like satellite link, radar system, radio and cellular mobiles. In this paper the behavior of microstrip antenna is analyzed with two types of electromagnetic band-gap structure such as frequency selective Structure (FSS), and photonic band-gap (PBG) structure. The major characteristics of EBG structure are to show the band gap features in the suppression of surface-wave propagation. This aspect helps to give better antenna performance such as increasing the gain and reducing back radiation. In particular, the distance between EBG cells and the patch is free from the outside control of the cell period, which can be arbitrarily selected, and the final setup offers footprint reduction. With these factors the Gain, bandwidth, and the Voltage standing wave ratio (VSWR) are analyzed using the FEM based EM simulator HFSS.


Duroid materials EBG structure FSS structure HFSS PBG structure Probe feed 


  1. 1.
    Islam, M.T., Alam, M.S.: Compact EBG structure for alleviating mutual coupling between patch antenna array elements. Prog. Electromagnet. Res. 137, 425–438 (2013). doi: 10.2528/PIER12121205 CrossRefGoogle Scholar
  2. 2.
    Shaban, H.F., Elmikaty, H.A., Shaalan, A.A.: Study the effects of electromagnetic band-gap (EBG) substrate on two patches microstrip antenna. Prog. Electromagnet. Res. B 10, 55–74 (2008). doi: 10.2528/PIERB08081901 CrossRefGoogle Scholar
  3. 3.
    Biancotto, C., Record, P.: Triangular lattice dielectric EBG antenna. Antennas Wirel. Propag. Lett. 9, 95–98 (2010). doi: 10.1109/LAWP.2010.2043494
  4. 4.
    McMichael, I.T., Mirotznik, M., Zaghloul, A.L., A method for determining optimal EBG reflection phase for low profile antennas. Antennas Propag. Soc. Int. Symp. (APSURSI), (2012). doi: 10.1109/APS.2012.6348945
  5. 5.
    Yang, L., Fan, M., Chen, F., She, J., Feng, Z.: A novel Compact electromagnetic-bandgap structure and its applications for microwave circuits. IEEE Trans. Microw. Theory Tech. 53(1), 183–190 (2005). doi: 10.1109/TMTT.2004.839322 CrossRefGoogle Scholar
  6. 6.
    Loh, T.H., Mias, C.: Photonic bandgap surfaces with inter digitated corrugations. IEEE Electron. Lett. 40, 1123–1125 (2004). doi: 10.1049/el:20045756 CrossRefGoogle Scholar
  7. 7.
    Lee, Y.L.R., et al.: Dipole and tripole metallodielectric photonic bandgap (MPBG) structures for microwave filter and antenna applications. IEEE Proc. Optoelectron. 147, 395–400 (2000). doi: 10.1049/ip-opt:20000892 CrossRefGoogle Scholar
  8. 8.
    Rahmat-Samii, Y., Yang , F.: Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge University Press, Cambridge (2009). doi: 10.1109/APMC.2008.4958195
  9. 9.
    Alam, M.S., Misran, N., Yatim, B., Islam, M.T.: Development of electromagnetic band gap structures in the perspective of microstrip antenna design. Int. J. Antennas Propag. 2013, Article ID 507158, 22 p. doi:
  10. 10.
    Li, B., Shen, Z.: Three-dimensional Dual-band Frequency Selective Structure Using Microstrip Lines. Progress in Electromagnetics Research Symposium Abstracts, Stockholm, Sweden, 12–15 Aug 2013Google Scholar
  11. 11.
    Rashid, A.K., Shen, Z.: A novel band-reject frequency selective surface with pseudo-elliptic response. IEEE Trans. Antennas Propag. 58(4), 1220–1226 (2010). doi: 10.1109/TAP.2010.2041167 CrossRefGoogle Scholar
  12. 12.
    Rashid, A.K., Shen, Z.: Scattering by a two-dimensional periodic array of vertically placed microstrip lines. IEEE Trans Antennas Propag. 59(7), 2599–2606 (2011). doi: 10.1109/TAP.2011.2152332 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, B., Shen, Z.: Miniaturized bandstop frequency-selective structure using stepped impedance resonators. IEEE Antennas Wirel. Propag. Lett. 11, 1112–1115 (2012). doi: 10.1109/LAWP.2012.2219571 CrossRefGoogle Scholar
  14. 14.
    Chen, H.-Y., Tao, Y.: Bandwidth enhancement of a U-Slot patch antenna using dual-band frequency selective surface with double rectangular ring elements. MOTL 53(7), 1547–1553 (2011)Google Scholar
  15. 15.
    Monavar, F.M., Komjani, N.: Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach. Progress Electromagnet. Res. 121, 103–120 (2011). doi: 10.2528/PIER11051305 CrossRefGoogle Scholar
  16. 16.
    Yeo, J., Mittra, R., Chakravarthy, S.: A GA-based design of electromagnetic bandgap (EBG) structures utilizing frequency selective surfaces for bandwidth enhancement of microstrip antennas. Antennas Propag. Soc. Int. Symp. 2, 400–403 (2002). doi: 10.1109/APS.2002.1016108

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Sathyabama UniversityChennaiIndia

Personalised recommendations