Performance Efficiency and Effectiveness of Clustering Methods for Microarray Datasets

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 44)

Abstract

Numerous of clustering methods are proficiently work for low dimensional data. However Clustering High dimensional data is still challenging related to time complexity and accuracy. This paper presents the performance efficiency and effectiveness of K-means and Agglomerative hierarchical clustering methods based on Euclidean distance function and quality measures Precision, Recall and F-measure for Microarray datasets by varying cluster values. Efficiency concerns about computational time required to build up dataset and effectiveness concerns about accuracy to cluster the data. Experimental results on Microarray datasets reveal that K-means clustering algorithm is favorable in terms of effectiveness where as efficiency of clustering algorithms depends on dataset used for empirical study.

Keywords

Clustering K-means Agglomerative hierarchical F-measure Precision Recall 

References

  1. 1.
    Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16(11), 1370–1386 (November 2004). doi: ieeecomputersociety.org/10.1109/TKDE
  2. 2.
    Steinbach, M., Ertöz, L., Kumar, V.: The challenges of clustering high dimensional data. In: New Vistas in Statistical Physics—Applications in Econophysics, Bioinformatics, and Pattern Recognition. Springer (2004)Google Scholar
  3. 3.
    Xu, R., Wunsch, D., Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (May 2005)Google Scholar
  4. 4.
    Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining (2000)Google Scholar
  5. 5.
    Onoda, T., Sakai, M., Independent component analysis based seeding method for k-means clustering. In: IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (2011). doi: 10.1109/WI-IAT.2011.29
  6. 6.
    Dhillon, I., Modha, D.: Concept decompositi-on for large sparse text data using clustering. Mach. Learn. 42, 143–175 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Rokach, L., Maimon, O.: Clustering Methods Data Mining and Knowledge Discovery Handbook. Springer (2005)Google Scholar
  8. 8.
    Achtert, E., Goldhofer, S., Kriegel,H.-P., Schubert, E., Zimek, A.: Evaluation of clusterings—metrics and visual support. In: Proceedings of the 28th International Conference on Data Engineering (ICDE), Washington, DC (2012)Google Scholar
  9. 9.
    Bourennani, F., Pu, K.Q., Zhu, Y.: Visualization and integration of databases using self-organizing map. IEEE Int. Conf. Adv. Databases Knowl. Data Appl. 155–160 (2009). doi: 10.1109/DBKDA.2009.30
  10. 10.
    Greenacre, M., Primicerio, R.: Measures of Distance between Samples: Euclidean, pp. 47–59. Fundacion BBVA Publication (December 2013). ISBN:978-84-92937-50-9Google Scholar
  11. 11.
  12. 12.
    Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D.: WEKA Manual for Version 3-7-10, July 31, 2013Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceGITAM UniversityHyderabadIndia
  2. 2.Department of Information TechnologyGITAM UniversityHyderabadIndia

Personalised recommendations