Advertisement

Extended Visual Cryptography Scheme for Multi-secret Sharing

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 44)

Abstract

This paper proposes a novel user-friendly visual cryptography scheme for multiple secret sharing. We have generated meaningful shares for multiple secret images using cover images. These meaningful shares are shared among participants. All the shares are required to recover secret images that are shared. The proposed scheme uses Boolean-based operations for generating meaningful shares and recovering all secret images that are used. The proposed scheme achieved lossless recovery of multiple secrets and overcomes the problem of management of meaningless shares.

Keywords

Visual cryptography User-friendly visual cryptography scheme Multiple secret sharing Extended visual cryptography scheme Meaningful shares 

References

  1. 1.
    Blakely, G.R.: Safeguarding cryptography keys. Proc. Nat. Comput. Conf. 48, 313–317 (1979)Google Scholar
  2. 2.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cimato, S., Yang, C.-N.: Visual cryptography and secret image sharing. In: Digital Imaging and Computer Vision Series (2012)Google Scholar
  4. 4.
    Naor, M., Shamir, A.: Visual cryptography, In: Proceedings of Advances in Cryptology, pp. 1–12 (1995)Google Scholar
  5. 5.
    Kafri, O., Keren, E.: Encryption of pictures and shapes by random grids. Opt. Lett. 12, 377–379 (1987)CrossRefGoogle Scholar
  6. 6.
    Shyu, S.: Image encryption by random grids. Pattern Recogn. 40, 1014–1031 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Wu, C.C., Chen, L.H.: A study on visual cryptography. Master Thesis, Institute of Computer and Information Sciences, National Chaio Tung University, Taiwan (1998)Google Scholar
  8. 8.
    Wu, H.C., Chang, C.C.: Sharing visual multi-secret using circle shares. Comput. Stan. Interfaces 28, 123–135 (2005)CrossRefGoogle Scholar
  9. 9.
    Shyu, S.J., Huang, S.Y., Lee, Y.K., Wang, R.Z.: Sharing multiple secrets in visual cryptography. Pattern Recogn. 40(12), 3633–3651 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Feng, J.B., Wu, H.C., Tsai, C.S., Chang, Y.F., Chu, Y.P.: Visual secret sharing for multiple secrets. Pattern Recogn. 41, 3572–3581 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Shyu, S.J., Huang, S.Y., Lee, Y.K., Wang, R.Z.Chen: Sharing multiple secrets in visual cryptography. Pattern Recogn. 40, 3633–3651 (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Chang, C.-C., Tu, N.T., Le, H.D.: Lossless and unlimited multi-image sharing based on Chinese remainder theorem and Lagrange interpolation. Sig. Process. 99, 159–170 (2014)CrossRefGoogle Scholar
  13. 13.
    Wu, H.C., Chang, C.C.: Sharing visual multi-secrets using circle shares. Comput. Stand. Interfaces 28, 123–135 (2005)CrossRefGoogle Scholar
  14. 14.
    Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.R.: Extended capabilities for visual cryptography. Theoret. Comput. Sci. 250, 143–161 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fang, W.P.: Friendly progressive visual secret sharing. Pattern Recogn. 41, 1410–1414 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Chen, T.H., Lee, Y.S.: Yet another friendly progressive visual secret sharing scheme. In: Proceedings of 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 353–356 (2009)Google Scholar
  17. 17.
    Wang, D., Yi, F., Li, X.: On general construction for extended visual cryptography schemes. Pattern Recogn. 42, 3071–3082 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Chen, T.H., Wu, C.S.: Efficient multi secret image sharing based on Boolean operations. J. Syst. Softw. 92, 107–114 (2014)CrossRefGoogle Scholar
  19. 19.
    Chen, T.H., Wu, C.S.: Efficient multi-secret image sharing based on Boolean operations. Sig. Process. 91, 90–97 (2011)CrossRefMATHGoogle Scholar
  20. 20.
    Shyu, S.J., Chen, K.: Visual multiple secret sharing based upon turning and flipping. Inf. Sci. 181, 3246–3266 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Institute for Development and Research in Banking TechnologyHyderabadIndia
  2. 2.School of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations