Imputation of Missing Gene Expressions for DNA Microarray Using Particle Swarm Optimization

  • Chanda Panse
  • Manali Kshirsagar
  • Dhananjay Raje
  • Dipak Wajgi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 381)

Abstract

While capturing gene expressions using microarray technique missing values get generated in the data set. These missing values create negative impact on downstream analysis of DNA microarray. Therefore, it is necessary to estimate them before starting further analysis. Many algorithms are proposed for imputation of missing values which are based on statistical methods. They require complete gene expression data set which is created by replacing missing values by different methods like row averaging or column averaging and later missing expressions are imputed. This may affect efficiency of algorithms. In order to deal with problem of missing values, we have proposed new method based on Swarm Intelligence which is easy to implement and apply to any kind of dataset irrespective of amount of missing values in it. This method imputes missing gene expressions in microarray data set using Particle Swarm Optimization.

Keywords

Microarray Swarm intelligence Particle swarm optimization (PSO) Imputation Row averaging etc. 

References

  1. 1.
    Tuikkala, J., Elo, L.L., Nevalainen, O.S., Aittokallio, T.: Missing value imputation improves clustering and interpretation of gene expression microarray data. BMC Bioinform. 9(202), 1–14 (2008)Google Scholar
  2. 2.
    Kentzoglanakis, Kyriakos, Poole, Matthew: A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(2), 358–371 (2012)CrossRefGoogle Scholar
  3. 3.
    Ghoneim, V.F., Solouma, N.H.: Evaluation of missing values imputation methods in cDNA microarrays based on classification accuracy. In: IEEE Conference on Biomedical Engineering (MECBME), pp. 367–370 (2011)Google Scholar
  4. 4.
    Scheel, I., Aldrin, M., Glad, I.K., Sorum, R., Lyng, H., Frigessi, A.: The influence of missing value imputation on detection of differentially expressed genes from microarray data. Bioinformatics 21(23), 4272–4279 (2005)Google Scholar
  5. 5.
    Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii1, S.: A Bayesian missing value estimation method for gene expression profile data. J. Bioinform. 19(16), 2088–2096 (2003)Google Scholar
  6. 6.
    Mandel, J.: Use of singular value decomposition in regression analysis. Am. Stat. 36(1), 15–24 (1982)Google Scholar
  7. 7.
    Shi, F., Zhang, D., Chen, J., Karimi, H.R.: Missing value estimation for microarray data by Bayesian principal component analysis and iterative local least squares. Hindawi Publish. Corp. 2013(162938), 1–5 (2013)Google Scholar
  8. 8.
    Jornsten, R., Wang, H.-Y., Welsh, W.J., Ouyang, M.: DNA microarray data imputation and significance analysis of differential expression. Bioinformatics 21(22), 4155–4161 (2005)Google Scholar
  9. 9.
    Wasito, I.: Least squares algorithms with nearest neighbor techniques for imputing missing data values. Thesis (2003)Google Scholar
  10. 10.
    Laaksonen, S.: Regression-based nearest neighbour hot decking. Comput. Stat. 15, 65–71 (2000)Google Scholar
  11. 11.
    Brock, G.N., Shaffer, J.N., Blakesley, R.E., Lotz, M.J., Tseng, G.C.: Which missing value imputation method to use in expression profiles: a comparative study and two selection schemed. BMC Bioinform. 9(12), 1–12 (2008)Google Scholar
  12. 12.
    del Valle, Y., Venayagamoorthy, G.K., Mahagheghi, S., Hernandez, J.C.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)Google Scholar
  13. 13.
    Kim, H., Golub, G.H., Park, H.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2), 187–198 (2005)Google Scholar
  14. 14.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation method for DNA microarray. Bioinformatics 17(6), 520–525 (2001)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Chanda Panse
    • 1
  • Manali Kshirsagar
    • 1
  • Dhananjay Raje
    • 2
  • Dipak Wajgi
    • 3
  1. 1.Department of Computer TechnologyYeshwantrao Chavan College of EngineeringNagpurIndia
  2. 2.MDS Bio-Analytics Pvt. LtdNagpurIndia
  3. 3.Department of Computer Science and EngineeringSt. Vincent Palloti College of EngineeringNagpurIndia

Personalised recommendations