Microstrip Patch Antenna Array with Metamaterial Ground Plane for Wi-MAX Applications

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 381)

Abstract

In this paper a microstrip patch antenna array, loaded with a pair of Split Ring Resonators (SRR), has been presented. This antenna is designed for IEEE 802.16a 5.8 GHz Wi-MAX applications. A pair of SRR has been etched on the ground plane of the antenna. This loading of SRR provides better matching conditions in the desired frequency band along with improvement in gain and enhancement in bandwidth. The unloaded antenna array resonates at 5.8 GHz with gain and bandwidth of 4.15 dBi and 425 MHz, respectively, whereas when the same antenna array is loaded with split ring resonators, the gain increases to 5.9 dBi and bandwidth reaches to 600 MHz. The electrical length of the patch is 0.23λ × 0.3λ. Suppression of higher harmonics and reduction in mutual coupling between the elements of patch antenna array, due to metamaterial loading, has also been analyzed.

Keywords

Microstrip patch antenna Mutual coupling reduction Split ring resonator Negative permeability Wi-MAX Metamaterial 

References

  1. 1.
    James, R., Hall, P.S.: Handbook of Microstrip and Printed Antennas. Wiley, New York (1997)Google Scholar
  2. 2.
    Yang, J.O., Yang, F., Wang, Z.M.: Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application. IEEE Antennas Wirel. Propag. Lett. 10, 310–312 (2011)CrossRefGoogle Scholar
  3. 3.
    Liu, Z.: Suppression of the mutual coupling between microstrip antenna arrays using negative permeability metamaterial on LTCC substrate. In: IEEE Antenna Propagation Symposium Society, pp. 1258–1259 (2013)Google Scholar
  4. 4.
    Elhefnawy, M., Ismail, W.: A microstrip antenna array for indoor wireless dynamic environments. IEEE Trans. Antenna Propag. 57(12), 3998–4002 (2009)CrossRefGoogle Scholar
  5. 5.
    Pham, N.T., Gye-An, L, De Flaviis, F.: Microstrip antenna array with beam forming network for WLAN applications. In: Proceedings of IEEE International Symposium Antennas Propagation Society, vol. 3A, pp. 267–270 (2005)Google Scholar
  6. 6.
    Zhu, F.G., Xu, J.D., Xu, Q.: Reduction of mutual coupling between closely-packed antenna elements using defected ground structure. Electron. Lett. 45(12), 601–602 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Farabani, H.S., Veysi, M., Kamyab, M., Tadjalli, A.: Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010)CrossRefGoogle Scholar
  8. 8.
    Ibraheam, M., Krauss, A., Irteza, S., Matthias, A.H.: Reduction of mutual coupling in compact antenna arrays using element tilting. In: Proceedings of Microwave Conference (GeMIC), pp. 1–4, Germany (2014)Google Scholar
  9. 9.
    Joshi, J.G., Pattnaik, S.S., Devi, S., Raghavan, S.: Magneto-inductive waveguide loaded microstrip patch antenna. Int. J. Microw. Opt. Technol. 7(1), 11–20 (2012)Google Scholar
  10. 10.
    Garg, R., Bhartia, P., Bhal, I., Ittipiboon, A.: Microstrip Antenna Design Handbook. Artech House, Boston (2001)Google Scholar
  11. 11.
    Balanis, C.A.: Modern Antenna Handbook. Wiley, New York (2011)Google Scholar
  12. 12.
    Pozar, D.M.: Microwave Engineering. Wiley, New York (2008)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Chirag Arora
    • 1
  • Shyam S. Pattnaik
    • 2
  • R. N. Baral
    • 3
  1. 1.Krishna Institute of Engineering & TechnologyGhaziabadIndia
  2. 2.National Institute of Technical Teachers’ Training and ResearchChandigarhIndia
  3. 3.IMS Engineering CollegeGhaziabadIndia

Personalised recommendations