On New Families Related to Bernoulli and Euler Polynomials

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 381)


In this article, the Laguerre-Gould Hopper based Bernoulli and Euler polynomials are introduced using operational methods. These polynomials are framed within the context of monomiality principle and their important properties are established. The operational rules and differential equations for these polynomials are also derived.


Bernoulli polynomials Euler polynomials Operational techniques 



The authors are thankful to the reviewer for useful suggestions towards the improvement of paper.


  1. 1.
    Andrews, L.C.: Special functions for Engineers and Applied Mathematicians. Macmillan Publishing Company, New York (1985)Google Scholar
  2. 2.
    Appell, P.: Sur une classe de polynômes. Ann. Sci. Ecole. Norm. 9(2), 119–144 (1880)Google Scholar
  3. 3.
    Appell, P., Kampé de Fériet, J.: Functions hypergéométriques et hypersphériques: Polynômes d’ Hermite. Gauthier-Villars, Paris (1926)Google Scholar
  4. 4.
    Dattoli, G.: Hermite-Bessel and Laguerre-Bessel Functions.: A by-product of the monomiality principle. Advanced special functions and applications (Melfi, 1999). In: Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, vol. 1, pp. 147–164. Aracne, Rome (2000)Google Scholar
  5. 5.
    Dattoli, G., Cesarano, C., Sacchetti, D.: A note on truncated polynomials. Appl. Math. Comput. 134, 595–605 (2003)Google Scholar
  6. 6.
    Dattoli, G., Ottaviani , P.L., Torre, A., Vázquez, L.: Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. Nuovo Cimento Soc. Ital. Fis. 20(2), 1–133 (1997)Google Scholar
  7. 7.
    Dattoli, G., Ricci, P.E.: A note on Legendre polynomials. Int. J. Nonlinear Sci. Numer. Simul. 2, 365–370 (2001)Google Scholar
  8. 8.
    Dattoli, G., Torre, A.: Operational methods and two variable Laguerre polynomials. Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. 132, 3–9 (1998)Google Scholar
  9. 9.
    Dattoli, G., Torre, A., Lorenzutta, S., Cesarano, C.: Generalized polynomials and operational identities. Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. 134, 231–249 (2000)Google Scholar
  10. 10.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)Google Scholar
  11. 11.
    Gould, H.W., Hopper, A.T.: Operational formulas connected with two generalizations of Hermite polynomials. Duke. Math. J. 29, 51–63 (1962)Google Scholar
  12. 12.
    Khan, S., Al-Gonah, A.A..: Operational methods and Laguerre-Gould Hopper polynomials. AppL. Math. Comput. 218, 9930–9942 (2012)Google Scholar
  13. 13.
    Steffensen, J.F.: The poweroid, an extension of the mathematical notion of power. Acta. Math. 73, 333–366 (1941)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations