Construction of Binary and Nonbinary LDPC-like Codes from Kernel Codes

  • C. Pavan Kumar
  • R. Selvakumar
  • Raghunadh K. Bhattar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 381)

Abstract

Low Density Parity Check (LDPC) codes have been of great interest to researchers due to its low complexity in encoding as well as decoding. Since the introduction of Turbo codes in 1993, importance of LDPC codes has been widely explored. Various techniques have been introduced for encoding and decoding of low density parity check codes based on algebraic structures, codes on graphs, etc. In this paper, a new method of constructing binary and nonbinary LDPC-like codes from Kernel codes defined over groups is discussed. Also, we show that constructions of binary and nonbinary LDPC-like codes are particular cases of our proposed method.

Keywords

LDPC codes Kernel codes Algebraic structures 

Notes

Acknowledgments

This work was partially supported by Indian Space Research Organization through its grants ISRO/RES/3/645/2014-15.

References

  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)Google Scholar
  2. 2.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: Turbo-codes 1. In: IEEE International Conference on Communications, ICC ‘93 Geneva. Technical Program, Conference Record, vol. 2, 1064–1070 (1993)Google Scholar
  4. 4.
    Gallager, R.G: Low-density parity-check codes. IRE Trans. Inf. Theor. 8(1), 21–28 (1962)Google Scholar
  5. 5.
    Moon, T.K: Error Correction Coding, Mathematical Methods and Algorithms. John Wiley and Son, New York (2005)Google Scholar
  6. 6.
    Iyengar, A.R, Paul, H.S., Jack, K.W.: LDPC codes for the cascaded BSC-BAWGN channel. In: 47th IEEE Annual Allerton Conference on Communication, Control, and Computing, Allerton, pp. 620–627 (2009)Google Scholar
  7. 7.
    Pishro-Nik, Hossein, Fekri, Faramarz: On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theor. 50(3), 439–454 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lan, L., Zeng, L., Tai, Y.Y., Chen, L., Lin, S., Abdel-Ghaffar, K.: Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach. IEEE Trans. Inf. Theor. 53(7), 2429–2458 (2007)Google Scholar
  9. 9.
    Sassatelli, L., Chilappagari, S.K., Vasic, B., Declercq, D.: Two-bit message passing decoders for LDPC codes over the binary symmetric channel, arXiv preprint arXiv:0901.2090 (2009)
  10. 10.
    Bonello, N., Chen, S., Hanzo, L.: Construction of regular quasi-cyclic protograph LDPC codes based on Vandermonde matrices. IEEE Trans. Veh. Technol. 57(4), 2583–2588 (2008)CrossRefGoogle Scholar
  11. 11.
    Nguyen, D.V., Vasic, B., Marcellin, M.V., Chilappagari, S.K.: Structured LDPC codes from permutation matrices free of small trapping sets. IEEE Inf. Theor. Workshop (ITW), 1–5 (2010)Google Scholar
  12. 12.
    Liva, G., Song, S., Lan, L., Zhang, Y., Lin, S., Ryan, W.E.: Design of LDPC codes: a survey and new results. J. Commun. Softw. Syst 2(3), 191–211 (2006)Google Scholar
  13. 13.
    Djurdjevic, I., Xu, J., Abdel-Ghaffar, K., Lin, S.: A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols. Algebraic Algorithms and Error-Correcting Codes, Applied Algebra, pp. 98–107. Springer (2003)Google Scholar
  14. 14.
    Baldi, M., Cancellieri, G., Chiaraluce, F.: Array convolutional low-density parity-check codes. IEEE Commun. Lett. 18(2), 336–339 (2014)Google Scholar
  15. 15.
    Tanner, R.M., Sridhara, D., Sridharan, A., Fuja, T.E, Costello, D.J.: LDPC block and convolutional codes based on circulant matrices. IEEE Trans. Inf. Theor. 50(12), 2966–2984 (2004)Google Scholar
  16. 16.
    Johnson, S.: Low-density parity-check codes from combinatorial designs, PhD thesis, The University of Newcastle (2004)Google Scholar
  17. 17.
    Johnson, S.J.: Introducing Low-Density Parity-Check Codes. University of Newcastle, Australia (2006)Google Scholar
  18. 18.
    Richardson, T.J, Shokrollahi, M.A., Urbanke, R.L: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theor. 47(2), 619–637 (2001)Google Scholar
  19. 19.
    Ganepola, V.S., Carrasco, R.A., Wassell, I.J., Le Goff, S.: Performance study of non-binary LDPC Codes over GF (q). In: 6th International Symposium on Networks and Digital Signal Processing in Communication Systems, CNSDSP, pp. 585–589 (2008)Google Scholar
  20. 20.
    Selvakumar, R., Balasubramani, P.: Kernel code and its controllability. J. Discrete Math. Sci. Crypt. 7(1), 97–101, Taylor & Francis (2004)Google Scholar
  21. 21.
    Selvakumar, R., Unconventional construction of DNA codes: group homomorphism. J. Discrete Math. Sci. Crypt. 17(3), 227–237, Taylor & Francis (2014)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • C. Pavan Kumar
    • 1
  • R. Selvakumar
    • 1
  • Raghunadh K. Bhattar
    • 2
  1. 1.School of Advanced SciencesVIT UniversityVelloreIndia
  2. 2.Space Applications CenterISROAhmedabadIndia

Personalised recommendations