A Survey on Texture Image Retrieval

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 381)

Abstract

Retrieving images from the large databases has always been one challenging problem in the area of image retrieval while maintaining the higher accuracy and lower computational time. Texture defines the roughness of a surface. For the last two decades due to the large extent of multimedia database, image retrieval has been a hot issue in image processing. Texture images are retrieved in a variety of ways. This paper presents a survey on various texture image retrieval methods. It provides a brief comparison of various texture image retrieval methods on the basis of retrieval accuracy and computation time with the benchmark databases. Image retrieval techniques vary with feature extraction methods and various distance measures. In this paper, we present a survey on various texture feature extraction methods by applying variants of wavelet transform. This survey paper facilitates the researchers with background of progress of image retrieval methods that will help researchers in the area to select the best method for texture image retrieval appropriate to their requirements.

Keywords

Image retrieval Texture image Multimedia database 

References

  1. 1.
    Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)Google Scholar
  2. 2.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)Google Scholar
  3. 3.
    Velisavljevic, V., Beferull-Lozano, B., Vetterli, M., Dragotti, P.L.: Directionlets: anisotropic multi-directional representation with separable filtering. IEEE Trans. Image Process. 17(7), 1916–1933 (2006)Google Scholar
  4. 4.
    Reddy, A.H., Chandra. N.S.: Local oppugnant color space extrema patterns for content based natural and texture image retrieval. Int. J. Electron. Commun. (AEÜ) 69(1), 290–298 (2014)Google Scholar
  5. 5.
    MIT Vision and Modeling Group, Vision Texture. http://vismod.www.media.mit.edu
  6. 6.
    Pi, M.H., Tong, C.S., Choy, S.K., Zhang, H.: A fast and effective model for wavelet subband histograms and its application in texture image retrieval. IEEE Trans. Image Process. 15(10), 3078–3088 (2006)Google Scholar
  7. 7.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)Google Scholar
  8. 8.
    Kokare, M., Biswas, P.K., Chatterji, B.N.: Rotation invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans. Syst. Man Cybern. 36(6), 1273–1282 (2006)Google Scholar
  9. 9.
    Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using new rotated complex wavelet filters. IEEE Trans. Syst. Man, Cybern. 35(6), 1168–1178 (2005)Google Scholar
  10. 10.
    Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)Google Scholar
  11. 11.
    Wouwer, G.V., Scheunders, P., Dyck, D.V.: Stastical texture characterization from discrete wavelet representation. IEEE Trans. Image Process. 8(4), 592–598 (1999)Google Scholar
  12. 12.
    Kingsbury, N.G.: Image processing with complex wavelet. Phil. Trans. Roy. Soc. London A 357, 2543–2560 (1999)Google Scholar
  13. 13.
    Zujovic, J., Pappas, T.N., Neuhoff, D.L.: Structural texture similarity metrics for image analysis and retrieval. IEEE Trans. Image Process. 22(7), 2545–2558 (2013)Google Scholar
  14. 14.
    Corbis Stock Photography. http://www.corbis.com (2011). Accessed 23 March 2011
  15. 15.
    CUReT: Columbia-Utrecht Refelctance and Texture Database. http://www1.cs.columbia.edu/CAVE/software/curet (2002). Accessed 4 Aug 2002
  16. 16.
    Dong, Y., Tao, D., Li, X., Ma, J., Pu, J.: Texture classification and retrieval using shearlets and linear regression. IEEE Trans. Cybern. 45(3), 358–369 (2015)Google Scholar
  17. 17.
    Shrivastava, N., Tyagi, V.: A review of ROI image retrieval techniques. Adv. Intell. Syst. Comput. 328, 509–520 (2015). doi: 10.1007/978-3-319-12012-6_56
  18. 18.
    Jeena Jacob, I., Srinivasagan, K.G., Jayapriya, K.: Local oppugnant color texture pattern for image retrieval system. Pattern Recogn. Lett. 42, 72–78 (2014)Google Scholar
  19. 19.
    Mukhopadhyay, S., Dash, J.K., Das Gupta, R.: Content-based texture image retrieval using fuzzy class membership. Pattern Recogn. Lett. 34(6), 646–654 (2013)Google Scholar
  20. 20.
    Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing (2015). doi: 10.1016/j.neucom.2015.03.015 Google Scholar
  21. 21.
    Kwitt, R., Uhl, A.: Lightweight probabilistic texture retrieval. IEEE Trans. Image Process. 19(1), 241–253 (2010)Google Scholar
  22. 22.
    Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010)Google Scholar
  23. 23.
    Pi, M., Li, H.: Fractal indexing with the joint statistical properties and its application in texture. IET Image Process 2(4), 218–230 (2008)Google Scholar
  24. 24.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and Kullback–Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)Google Scholar
  25. 25.
    Nava, R., Escalante-Ramírez, B., Cristóbal, G.: Texture image retrieval based on log-gabor features. Progress Pattern Recogn. Image Anal. Comput. Vis. Appl. 7441, 414–421 (2012)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of CSEJaypee University of Engineering and TechnologyRaghogarh, GunaIndia

Personalised recommendations