Advertisement

An Investigation of Gabor PCA and Different Similarity Measure Techniques for Image Classification

  • N. Hemavathi
  • T. R. Anusha
  • K. Mahantesh
  • V. N. Manjunath Aradhya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 381)

Abstract

A method of attributing an image to a particular category from a large collection of images is stated as Image Classification. In this paper, we propose diverse subspace techniques, which concentrate on consistency and orientations of an image, extracting color, shape, and texture data with orthogonal transformation into uncorrelated space. Initially, preprocessing is done by transforming image to HSV color space as it is similar to human color perception property. Later, most informative score features are obtained using PCA, MPCA, KPCA, and GPCA with linear and nonlinear projection onto lower dimensional space which are further classified using diverse similarity measures and neural networks. The performance analysis is carried out on large multi-class datasets such as Corel-1K, Caltech-101, and Caltech-256 and the improvised correctness rate is witnessed in comparison with several benchmarking methods.

Keywords

Image retrieval PCA MPCA KPCA GPCA G-vectors Score features Similarity measures GRNN PNN 

References

  1. 1.
    Swain, M.J., Ballard, D.H.: Indexing via color histograms. In: Proceedings of 3rd International Conference Computer Vision, pp. 11–32 (1991)Google Scholar
  2. 2.
    Stricker, M., Orengo, M.: Similarity of color images. Storage retrieval image video database. In: Proceedings SPIE, pp. 381–92 (1995)Google Scholar
  3. 3.
    Holub, A., Welling, M., Perona, P.: Exploiting unlabelled data for hybrid object classification. In: National Information Processing System Workshop on Inter-Class Transfer (2005)Google Scholar
  4. 4.
    Wang, X., Wang, Z.: A novel method for image retrieval based on structure element’s descriptor. J. Vis. Commun. Image Represent. 24, 63–74 (2013)Google Scholar
  5. 5.
    Wang, X., Chen, Z., Yun, J.: An effective method for color image retrieval based on texture. Comput. Stan. Interf. 34, 31–35 (2012)Google Scholar
  6. 6.
    Jagpal, S., Jashanbir, S.K., Reecha, S.: Different approaches of CBIR techniques. Int. J. Comput. Distrib. Syst. 1(2), 76–78 (2012)Google Scholar
  7. 7.
    Mutch, J., Lowe, D.G.: Multiclass Object Recognition with Sparse, Localized Features, vol. 1, pp. 11–18. IEEE—CVPR (2006)Google Scholar
  8. 8.
    Fei-Fei, L., Fergus, R., Perona, P.: An incremental bayesian approach testing on 101 objects categories. In: Workshop on Generative-Model Based Vision. CVPR (2004)Google Scholar
  9. 9.
    Wang, J., Yang, J., Huang, T., Gong, Y.: Locality Constraint Linear Coding for Image Classification, pp. 1063–6919. CVPR (2010)Google Scholar
  10. 10.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1794–1801 (2009)Google Scholar
  11. 11.
    Liu, B.-D., Wang, Y.-X., Zhang, Y.-J., Shen, B.: Learning dictionary on manifolds for image classification. Pattern Recogn. 46, 1879–1890 (2013). (Elsevier)Google Scholar
  12. 12.
    Mahantesh, K., Manjunath Aradhya, V.N., Niranjan, S.K.: Coslets: A Novel Approach to Explore Object Taxonomy in Compressed DCT Domain for Large Image Datasets, vol. 320, pp. 39–48. Springer (2015)Google Scholar
  13. 13.
    Anusha, T.R., Hemavathi, N., Mahantesh, K., Chetana, R.: An investigation of combining gradient descriptor and diverse classifiers to improve object taxonomy in very large image dataset. In: International Conference on Contemporary Computing and Informatics, IEEE, pp. 581–585 (2014)Google Scholar
  14. 14.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)Google Scholar
  15. 15.
    Pankaj, D.S., Wilscy, M.: Comparison of PCA, LDA & Gabor Features for Face Recognition Using Neural Networks, vol. 177, pp. 413–422 (2013)Google Scholar
  16. 16.
    Preeti Rai, Prithee Khanna.: An Illumination, Expression & Noise Invariant Gender Classifier Using 2D-PCA on Real Gabor Space, pp. 15–28. Elseiver (2015)Google Scholar
  17. 17.
    Shlens, J.: A Tutorial on PCA Derivation, Discussion and SVD (2003)Google Scholar
  18. 18.
    Gottumukkal, R., Asari, V.K.: An Improved Face Recognition Technique Based on Modular PCA Approach, pp. 429–436 (2004)Google Scholar
  19. 19.
    Wang, Q.: Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models. CVPR (2012)Google Scholar
  20. 20.
    Wasserman, P.D.: Adv. Methods Neural Comput. 155–61 (1993)Google Scholar
  21. 21.
    Thanwari, P.B., Janwe, N.J.: CBIR based on color and texture. Int. J. Inf. Technol. Knowl. Manage. 4, 99–132 (2011)Google Scholar
  22. 22.
    Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset (2007)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • N. Hemavathi
    • 1
  • T. R. Anusha
    • 1
  • K. Mahantesh
    • 1
  • V. N. Manjunath Aradhya
    • 2
  1. 1.Department of ECESri Jagadguru Balagangadhara Institute of TechnologyBangaloreIndia
  2. 2.Department of MCASri Jayachamarajendra College of EngineeringMysoreIndia

Personalised recommendations