Cuckoo Search in Test Case Generation and Conforming Optimality Using Firefly Algorithm

  • Kavita Choudhary
  • Yogita Gigras
  • Shilpa
  • Payal Rani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 380)

Abstract

To accomplish the effectual software testing there is a requirement for optimization of test cases. The most challenging task in software testing is the generation of optimal test cases. There are various methods that are being used for generation of test cases and the test case optimization. The paper manifests the two different algorithms for test case generation and optimization of those test cases. The algorithms discussed are based on multi-objective optimization technique and successfully shows the desired results. The Cuckoo search algorithm based on the breeding behavior of Cuckoo bird is used here for the generation of test cases for a discussed problem and another algorithm based on the flashing phenomenon of fireflies is used for the optimization of the generated test cases. The second algorithm used verifies if every node in the given control flow graph is covered by given test cases.

Keywords

Brightness value Code coverage Cuckoo search Firefly Optimal solutions Target node Test-case generation 

References

  1. 1.
    Tuba, M., Subotic, M., Stanarevic, N.: Performance of a modified cuckoo search algorithm for unconstrained optimization problems. WSEAS Trans. Syst. 11(2) (2012). E-ISSN: 2224-2678Google Scholar
  2. 2.
    Valian, E., Mohanna, S., Tavakoli, S.: Improved cuckoo search algorithm for global optimization. Int. J. Commun. Inf. Technol. IJCIT-2011 1(1) (2011)Google Scholar
  3. 3.
    Srivastava, P.R., Reddy, D.V., Reddy, M.S., Ramaraju, C.V.B., Nath, I.C.M.: Test Case Prioritization using Cuckoo Search. doi: 10.4018/978-1-4666-0089-8.ch006
  4. 4.
    Zhao, P., Li, H.: Opposition-Based Cuckoo Search Algorithm for Optimization Problems IEEE. doi: 10.1109/ISCID.2012.93
  5. 5.
    Zhang, Z., Chen, Y.: An Improved Cuckoo Search Algorithm with Adaptive Method IEEE. doi: 10.1109/CSO.2014.45
  6. 6.
    He, X., Yang, X.: Non-dominated Sorting Cuckoo Search for Multiobjective Optimization. IEEE (2014). 978-1-4799-4458-3/14/$31.00Google Scholar
  7. 7.
    Hashmi, A., Goel, N., Goel, S., Gupta, D.: Firefly algorithm for unconstrained optimization. IOSR J. Comput. Eng. (IOSR-JCE) 11(1), 75–78 (2013). e-ISSN: 2278-0661, p-ISSN: 2278-8727Google Scholar
  8. 8.
    Marichelvam, P., Yang X.: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans. Evol. Comput. 18(2) (2014)Google Scholar
  9. 9.
    Arora, S., Singh, S.: The Firefly optimization algorithm: convergence analysis and parameter selection. Int. J. Comput. Appl. 69(3), 0975–8887 (2013)Google Scholar
  10. 10.
    Goel, S., Panchal, V.K.: Performance Evaluation of a New Modified Firefly Algorithm, IEEE (2014). 978-1-4799-6896-1/14/$31.00Google Scholar
  11. 11.
    Liu, C., Gao, Z., Zhao, W.: A New Path Planning Method Based on Firefly Algorithm, IEEE. doi: 10.1109/CSO.2012.174
  12. 12.
    Srivastava, P.R.: Software Analysis Using Cuckoo Search. Springer International Publishing Switzerland 2015. Advances in Intelligent Informatics. Advances in Intelligent Systems and Computing 320. doi: 10.1007/978-3-319-11218-3_23
  13. 13.
    Kirner, R., Haas, W.: Optimizing Compilation with Preservation of Structural Code Coverage Metrics to Support Software Testing. http://uhra.herts.ac.uk/bitstream/handle/2299/13515/paper_Kirner_STVR_2014_preprint.pdf?sequence=4

Copyright information

© Springer India 2016

Authors and Affiliations

  • Kavita Choudhary
    • 1
  • Yogita Gigras
    • 1
  • Shilpa
    • 1
  • Payal Rani
    • 2
  1. 1.ITM UniversityGurgoanIndia
  2. 2.Banasthali UniversityJaipurIndia

Personalised recommendations