Music Revolution Through Genetic Evolution Theory

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 380)


Sa_Re_Ga_Ma_Pa_Da_Ni_Sa” is the soul of Indian Music. As we play these 7 nodes at different frequency, different length, and at different reparations on one or more nodes, we will listen n number of feelings, expressions, and emotions. As musician can create such number of tones manually and get famous, all world remember such tone forever. As frequency, node duration, node energy are the parameters for creating different tones for 7 nodes, we can use genetic evolutionary theory for revolutionary musical tones evolution. In this paper, we are proposing novel method for musical tone generation using machine learning algorithm with the help of Narmour Structure Analysis.


Narmour structure Genetic algorithm Music evolution 


  1. 1.
    Rafael, R., Esteban, M., Xavier, S.: A rule-based evolutionary approach to music. IEEE Trans. Evol. Comput. 16(1) (2012)Google Scholar
  2. 2.
    Spears, W.M., De Jong, K.A.: Using genetic algorithms for supervised concept learningGoogle Scholar
  3. 3.
    De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learningGoogle Scholar
  4. 4.
    Biles, J.A.: GenJam: Evolutionary Computation Gets a Gig. In: Proceedings of the 2002 Conference for Information Technology Curriculum. Rochester, New YorkGoogle Scholar
  5. 5.
    Tuohy, D.R., Potter, W.D.: GA-based Music Arranging for GuitarGoogle Scholar
  6. 6.
    Alfonseca, M., Univ. Autonoma de Madrid, Madrid, Cebrian, M., Ortega, A.A.: Simple genetic algorithm for music generation by means of algorithmic information theory. In: IEEE Congress on Evolutionary Computation, CEC 2007Google Scholar
  7. 7.
    Suresh, L. et al.: Genetic Algorithm: Paradigm Shift Over a Traditional Approach of Timetable Scheduling. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014, Advances in Intelligent Systems and Computing, Vol. 327, pp. 771–780 (2015)Google Scholar
  8. 8.
    Eduardo, C., Marcelo, G., Martins, J.M., Miranda, E.R.: Computational musicology: an artificial life approach. Future Music LabGoogle Scholar
  9. 9.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989)Google Scholar
  10. 10.
    Hue, X.: Genetic algorithms for optimization: Background and applications. Edinburgh Parallel Comput. Centre, Univ. Edinburgh, Edinburgh, U.K., Ver 1.0, Feb. 1997Google Scholar
  11. 11.
    Eden: An evolutionary sonic ecosystem. Springer-verlag, Berlin (2001)Google Scholar
  12. 12.
    Umanski, D., Kogovšek, D., Ozbič, M., Schiller, N.O.: Development of a voice-based rhythm game for training speech motor skills of children with speech disorders. In: Proceedings 8th International Conference Disability, Virtual Reality and Associated Technologies, Sept. 2010 ICDVRAT. ISBN:978 07049 15022Google Scholar
  13. 13.
    François, P., Aymeric, Z.: Evolving automatically high-level music descriptors from acoustic signals. In: International Symposium on Computer Music Modeling and Retrieval (CMMR2003). Springer Verlag, L NCS, 2771 (2003)Google Scholar
  14. 14.
    McCormack, J.: Evolving Sonic Ecosystems. In: Evolving Sonic Ecosystems, Kybernetes (2003)Google Scholar
  15. 15.
    Rafael, R., Esteban, M., Antonio P., Emilia, G., Xavier, S.: Performance-based interpreter identification in saxophone audio recordings. IEEE Trans. Circuits Systems Video Technol 17(3) (2007)Google Scholar
  16. 16.
    Maher, R.C., Beauchamp, J.W.: Fundamental frequency estimation of musical signals using a two-way mismatch procedure. J. Acoust. Soc. Am. 95(4) (1994)Google Scholar
  17. 17.
    Nick, C.: Using a pitch detector for onset detection. University of Cambridge, Queen Mary, University of London (2005)Google Scholar
  18. 18.
    Anders, F., Roberto, B., Lars, F., Johan, S.: Musical punctuation on the microlevel: automatic identification and performance of small melodic units. J. New Music Research, SwedenGoogle Scholar
  19. 19.
    Rafael, R., Emilia, G., Veronica, V., Montserrat, P., Amaury, H., Esteban, M.: Modeling expressive music performance in bassoon audio recordings. ICIC 2006, LNCIS 345, pp. 951–957. Springer-Verlag, Berlin Heidelberg (2006)Google Scholar
  20. 20.
    Rafael, R., Amaury, H.: Inducing a generative expressive performance model using a sequential-covering genetic Algorithm. GECCO’07July 7–11, 2007. ACM 978-1-59593-697-4/07/0007Google Scholar
  21. 21.
    Rafael, R., Amaury, H.: Understanding Expressive Music Performance Using Genetic AlgorithmsGoogle Scholar
  22. 22.
    Róisín, L., Jacqueline, W., Michael, O., McDermott, J.: Genetic Programming for Musical Sound AnalysisGoogle Scholar
  23. 23.
    Daichi, A., Hitoshi, I.: Real-time musical interaction between musician and multi-agent system. PhD. 8th Generative Art Conference GA2005Google Scholar
  24. 24.
    Hua, Z., Hefei Shangfei, W., Zhen W.: Emotional Music Generation Using Interactive Genetic Algorithm, Computer Aided Systems Theory. In: EUROCAST 2011, Department of Computer Science Univ. of Sci. & Technol. of China. SpringerGoogle Scholar
  25. 25.
    Loughran, R., Jacqueline, W., O’Neill, M., Mc Dermott, J.: Genetic Programming for Musical Sound Analysis”Google Scholar
  26. 26.
    Java Music Library:

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Computer EngineeringSVPM’s COEBaramatiIndia
  2. 2.Department of Computer EngineeringAISSMS IOITPuneIndia
  3. 3.Department of Computer Science EngineeringWITSolapurIndia

Personalised recommendations