Determinantal Approach to Hermite-Sheffer Polynomials

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 380)


In this article, the determinantal definition for the Hermite-Sheffer polynomials is established using linear algebra tools. Further, the Hermite-Sheffer matrix polynomials are introduced by means of their generating function.


Hermite polynomials Sheffer polynomials Determinantal definition 



The authors are thankful to the reviewer for useful suggestions toward the improvement of the paper.


  1. 1.
    Appell, P.: Sur Une Classe de Polynômes. Ann. Sci. École. Norm. Sup. 9(2), 119–144 (1880)Google Scholar
  2. 2.
    Appell, P., Kampé de Fériet, J.: Fonctions Hypergéométriques et Hypersphériques: Polynômes d’ Hermite. Gauthier-Villars, Paris (1926)Google Scholar
  3. 3.
    Constantine, A.G., Muirhead, R.J.: Partial differential equations for hypergeometic functions of two argument matrix. J. Multivariate Anal. 3, 332–338 (1972)Google Scholar
  4. 4.
    Costabile, F.A., Longo, E.: A determinantal approach to Appell polynomials. J. Comput. Appl. Math. 234(5), 1528–1542(2010)Google Scholar
  5. 5.
    Costabile, F.A., Longo, E.: An algebraic approach to Sheffer polynomial sequences. Integral Transforms Spec. Funct. 25(4), 295–311 (2013)Google Scholar
  6. 6.
    Dattoli, G., Ottaviani, P.L., Torre, A., Vázquez, L.: Evolution operator equations: integration with algebraic and finite difference methods, applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. Nuovo Cimento Soc. Ital. Fis. (4) 20(2), 1–133 (1997)Google Scholar
  7. 7.
    Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations. Approx. Theory Appl. (N.S.) 12(2), 20–30 (1996)Google Scholar
  8. 8.
    Khan, S., Al-Saad, M.W.M., Yasmin, G.: Some properties of Hermite-based Sheffer polynomials. Appl. Math. Comput. 217(5), 2169–2183 (2010)Google Scholar
  9. 9.
    Khan, S., Raza, N.: 2-variable generalized Hermite matrix polynomials and Lie Algebra representation. Rep. Math. Phys. 66(2), 159–174 (2010)Google Scholar
  10. 10.
    Roman, S.: The Umbral Calculus. Academic Press, New York (1984)Google Scholar
  11. 11.
    Schmidlin, D.J.: The bond between causal complex Cepstra and Sheffer polynomials. IEEE Trans. Circuits Syst. II: Express Briefs 52(2), pp. 99–103 (2005)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations