Advertisement

Analysis of Molecular Single-Electron Transistors Using Silicene, Graphene and Germanene

  • E. Meher Abhinav
  • Sai Naveen Kavuri
  • Thota Sandeep Kumar
  • Maragani Thirupathi
  • M. Chandra Mohan
  • A. Suresh Reddy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)

Abstract

By using Ab initio approach, we have analysed Silicene-, Germanene- and Graphene-based molecular single-electron transistors. It is based on non-equilibrium greens function (NGEF) and density functional theory (DFT). Three different fullerene molecules are taken and optimization is done. In Coulomb blockade regime, silicene, germanene and graphene are kept above gate dielectric between drain and source for weak coupling. We have taken gold electrodes for SET environment. Gold is widely used as metal electrode in nanoscale devices. We have calculated the HOMO and LUMO values and total energy versus gate voltage. Charge stability diagrams are obtained by calculating charging energy as function of external gate potential. By these calculations, the analysis of three different molecular single-electron transistors is done. The total energies of these molecules are highly negative (very low) compared to other molecules.

Keywords

Single-electron transistor (SET) Graphene Silicene Germanene Ab initio Density functional theory (DFT) Non-equilibrium greens function (NEGF) and GGA-PBE 

Notes

Acknowledgments

The authors thank the department of science and technology of the government of India for partially funding this work.

References

  1. 1.
    1965—“Moore’s Law” predicts the future of integrated circuits. In: Computer History Museum. 2007. Retrieved 2009-03-19Google Scholar
  2. 2.
    Mollick, E.: Establishing Moore’s law. IEEE Ann. Hist. Comput. 28(3), 62–75 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brown, E.R., Söderström, J.R., Parker, C.D., Mahoney, L.J., Molvar, K.M., McGill, T.C.: Appl. Phys. Lett. 58, 2291 (1991)CrossRefGoogle Scholar
  4. 4.
    Broekaert, T.P.E., Brar, B., van der Wagt, J.P.A., Seabaugh, A.C., Morris, F.J., Moise, T.S., Beam III, E.A., Frazier, G.A.: IEEE J. Solid State Circuits 22, 1342 (1998)CrossRefGoogle Scholar
  5. 5.
    Mathews, R.H., Sage, J.P., Sollner, T.C.L.G., Calawa, S.D., Chen, C.L., Mahoney, L.J., Maki, P.A., Molvar, K.M.: Proc. IEEE 87, 596 (1999)CrossRefGoogle Scholar
  6. 6.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)CrossRefGoogle Scholar
  7. 7.
    Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Phys. Rev. Lett. 49, 57 (1982)CrossRefGoogle Scholar
  8. 8.
    Binnig, G., Quate, C.F., Gerber, Ch.: Phys. Rev. Lett. 56, 930 (1986)Google Scholar
  9. 9.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Nature 438, 197 (2005)CrossRefGoogle Scholar
  10. 10.
    Fock, V.: Z. Phys. 61, 126 (1930)MATHCrossRefGoogle Scholar
  11. 11.
    Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Nat. Phys. 2, 620 (2006)CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Nature 438, 201 (2005)CrossRefGoogle Scholar
  13. 13.
    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Science 312, 1191 (2006)Google Scholar
  14. 14.
    Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  15. 15.
    Abhinav, E.M., Chary, D.V.: Strain-induced on germanene monolayer 6 nm short channel FET from first-principle study. In: Circuits, Communication, Control and Computing (I4C), 2014 International Conference on, pp. 1, 4, 21–22 Nov 2014. doi: 10.1109/CIMCA.2014.7057743
  16. 16.
    Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Phys. Rev. Lett. 100, 206803 (2008)CrossRefGoogle Scholar
  17. 17.
    Son, Y.-W., Cohen, M.L., Louie, S.G.: Nature 444, 347 (2006)CrossRefGoogle Scholar
  18. 18.
    Son, Y.-W., Cohen, M.L., Louie, S.G.: Phys. Rev. Lett. 97, 216803 (2006)CrossRefGoogle Scholar
  19. 19.
    Takeda, K., Shiraishi, K.: Phys. Rev. B 50, 14916 (1994)CrossRefGoogle Scholar
  20. 20.
    Zhang, M., Kan, Y.H., Zang, Q.J., Su, Z.M., Wang, R.S.: Chem. Phys. Lett. 379, 81 (2003)CrossRefGoogle Scholar
  21. 21.
    Durgun, E., Tongay, S., Ciraci, S.: Phys. Rev. B 72, 075420 (2005)CrossRefGoogle Scholar
  22. 22.
    Atomistix Toolkit Version 13.8.0 Quantum wise A/S: http://quantumwise.com
  23. 23.
    Riviere, J.C.: The work function of gold. Appl Phys Lett 8, 172 (1966)Google Scholar
  24. 24.
    Seldenthuis, J.S., van der Zant, H.S.J., Ratner, M.A., Thijssen, J.M.: Phys. Rev. B 81, 205430 (2010)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • E. Meher Abhinav
    • 1
  • Sai Naveen Kavuri
    • 1
  • Thota Sandeep Kumar
    • 1
  • Maragani Thirupathi
    • 1
  • M. Chandra Mohan
    • 1
  • A. Suresh Reddy
    • 1
  1. 1.Department of Electronic and CommunicationsMalla Reddy College of EngineeringHyderabadIndia

Personalised recommendations