Application of Genetic Algorithm for Evolution of Quantum Fourier Transform Circuits

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)


Quantum Fourier Transform finds a variety of applications in quantum computing. It is the most important building block in a number of quantum algorithms like Shor’s algorithm, phase estimation algorithm, etc. This paper illustrates the ability of Genetic algorithm for evolving these quantum fourier transform circuits on a classical computer. Circuits for two, three, four, and five qubits have been discussed in the paper, however. the algorithm has been generalized for evolving circuits for any number of qubits.


Genetic algorithm Quantum fourier transform Quantum circuits 


  1. 1.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  2. 2.
  3. 3.
    Ding, S., Jin, Z., Yang, Q.: Evolving quantum circuits at the gate level with a hybrid quantum-inspired evolutionary algorithm. In: Soft Computing, Springer-Verlag, pp. 1059–1072 (2008)Google Scholar
  4. 4.
    Williams, C.P., Alexander, G.G.: Automated design of quantum circuits. QCQC’98, LNCS (1999)Google Scholar
  5. 5.
    Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Quantum computing applications of genetic programming. Advances in Genetic Programming (1999)Google Scholar
  6. 6.
    Rubinstein, B.I.P.: Evolving quantum circuits using genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation (2001)Google Scholar
  7. 7.
    Leier, A., Banzhaf, W.: Evolving Hogg’s quantum algorithm using linear-tree GP. In: Proceedings of the 2003 International Conference on Genetic and Evolutionary Computation: Part 1, pp. 390–400 (2003)Google Scholar
  8. 8.
    Lukac, M., Perkowski, M.: Evolving quantum circuits using genetic algorithm. In: Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (2002)Google Scholar
  9. 9.
    Lukac, M., Perkowski, M., Goi, H., Pivtoraiko, M., Yu, C.H., Chung, K., Jee, H., Kim, B., Kim, Y.: Evolutionary approach to quantum and reversible circuits synthesis. Artif. Intell. Rev. 30, 361–417 (2003)CrossRefGoogle Scholar
  10. 10.
    Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: Adaptive and natural computing algorithms. Lect. Notes Comput. Sci. 4431, 174–183 (2007)CrossRefGoogle Scholar
  11. 11.
    Mukherjee, D., Chakrabarti, A., Bhattacherjee, D.: Synthesis of quantum circuits using genetic algorithm. Int. J. Recent Trends Eng. 2(1) (2009)Google Scholar
  12. 12.
    Veiri, C., Josephine, A., Frank, M.: A fully reversible asymptotically zero energy microprocessor. MIT AI Laboratory (1998)Google Scholar
  13. 13.
    Mukhopadhyay, D., Si, A.: Quantum multiplexer desigining and optimization applying genetic algorithm. Int. J. Comput. Sci. 7(5) (2010)Google Scholar
  14. 14.
    Satsangi, S., Gulati, A., Kalra, P.K., Patvardhan, C.: Application of genetic algorithms for evolution of quantum equivalents of boolean circuits. Int. J. Electr. Comput. Electron. Commun. Eng. 6(3) (2012)Google Scholar
  15. 15.
    Yabuki, T., Iba, H.: Genetic algorithms for quantum circuit design—evolving a simpler teleportation circuit. In Late Breaking Papers at GECCO (2000)Google Scholar
  16. 16.
    Massey, P., Clark, J.A., Stepney, S.: Human-competitive evolution of quantum computing artifacts by genetic programming. Evol. Comput. 14(1), 21–40 (2006)CrossRefGoogle Scholar
  17. 17.
    Yang, Q., Zhong, S., Ding, S.: A simple quantum inspired evolutionary algorithm and its application to numerical optimization problems. J. Wuhan University (Natural Science Edition) 52(1), 21–24 (2006)MATHMathSciNetGoogle Scholar
  18. 18.
    Satsangi, S., Patvardhan, C.: Design of reversible quantum equivalents of classical circuits using hybrid quantum inspired evolutionary algorithm. International Advanced Computing Conference. pp. 12–13 (2015)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Physics and Computer ScienceDayalbagh Educational InstituteAgraIndia
  2. 2.Department of Electrical EngineeringDayalbagh Educational InstituteAgraIndia

Personalised recommendations