Advertisement

Segmentation of the Human Corpus Callosum Variability from T1 Weighted MRI of Brain

  • Shayak Sadhu
  • Sudipta Roy
  • Siddharth Sadhukhan
  • S K Bandyopadhyay
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)

Abstract

Corpus Callosum is an important part of the brain which works as major neural pathway that connects homologous cortical areas of the two cerebral hemispheres. The size of Corpus Callosum is affected by age, sex, neurodegenerative diseases and various lateralized behaviour in people. Here T1 weighted Magnetic Resonance Imaging (MRI) of brain, usually the sagittal sections is taken which is then followed by the automated segmentation of the MRI slide. This segmentation has an important application in neurology as the shape as the thickness, size and orientation of Corpus Callosum depends on the various characteristics of the person. Lobar connectivity based percolations of the corpus callosum can be computed by our proposed method which is very accurate segmentation.

Keywords

Corpus callosum Automated segmentation MRI of brain Quantification Sagittal region Bending angle Midpoint 

References

  1. 1.
    Chaim, T.M., Duran, F.L.S., Uchida, R.R., Périco, C.A.M., de Castro Geraldo C.C.: Volumetric reduction of the corpus callosum in Alzheimer’s disease in invivo as assessed with voxel-based morphometry. Psychiatry Research, Neuroimaging (2006)Google Scholar
  2. 2.
    Bakshi, R., Dandamudi, V.S.R., Neema, M., De Bermel, C.R.A.: Measurement of brain and spinal cord atrophy by magnetic resonance imaging as a tool to monitor multiple sclerosis. J. Neuroimag. 15.4, 30 (2005)Google Scholar
  3. 3.
    Wright, I.C., McGuire, P.K., Poline, J.B.: A voxel-based method for statistical analysis of gray and whiter matter density applied to schizophrenia. Neuroimage 2, 244–252 (1995)CrossRefGoogle Scholar
  4. 4.
    Marchetti, R.L., de Campos Bottino C.M., NagahishiSuely, M., Campi, C.C.: Confiabilidade de Medidas Volumétricas de Estruturas Temporais Mesiais. Arquivos de Neuro-Psiquiatria, v. 60, n.2B (2002)Google Scholar
  5. 5.
    Nigro, S., Cerasa1, A., Zito, G., Perrotta, P., Chiaravalloti, F., Donzuso, G., Fera, F., Bilotta, E., Pantano, P., Quattrone, A.: The Alzheimer’s Disease Neuroimaging Initiative: Fully Automated Segmentation of the Pons and Midbrain using Human T1 MR Brain Images, vol. 9, Issue 1, Jan 2014Google Scholar
  6. 6.
    Wright, I.C., McGuire, P.K., Poline, J.B.: A voxel-based method for statistical analysis of gray and whitermatter density applied to schizophrenia. Neuroimage 2, 244–252 (1995)CrossRefGoogle Scholar
  7. 7.
    Pandya, D.N., Seltzer, B.: The topography of commissural fibers two hemispheres-one brain: functions of the corpus callosum, pp. 47–74. Alan R Liss Inc, New York (1986)Google Scholar
  8. 8.
    Trevarthen, C.: Integrative functions of the cerebral commissures. In: Handbook of Neuropsychology, 4, pp. 49–83. Elsevier Scientific Publishers, Amsterdam (1990)Google Scholar
  9. 9.
    Simon, J.H., Jabocs, L.D., Campion, M.K., Rudick, R.A., Cookfair, D.L., Herndon, R.M., Richert, J.R., Salazar, A.M., Fischer, J.S., Goodkin, D.E., Simonian, N., Lajaunie, M., Miller, D.E., Wende, K., Martens-Davidson, A., Kinkel, R.P., Munschauer, F.E.: A longitudinal study of brain atrophy in relapsing multiple sclerosis. Am. Acad. Neurol. 53(1), 139–148 (1999)Google Scholar
  10. 10.
    Barkhof, F.J., Elton, M., Lindeboom, J., Tas, M.W., Schmidt, W.F., Hommes, O.R., Polman, C.H., Kok, A., Valk, J.: Functional correlates of callosal atrophy in relapsing remitting multiple sclerosis patients: a preliminary MRI study. J. Neurol. 245, 153–158 (1998)CrossRefGoogle Scholar
  11. 11.
    Habib, M., Gayraud, D., Oliva, A., Regis, J., Salamon, G., Khalil, R.: Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn. 16, 41–61 (1991)CrossRefGoogle Scholar
  12. 12.
    Lee, D.J., Chen, Y., Schlaug, G.: Corpus callosum: musician and gender effects. Neuro Report 14, 205–209 (2001)Google Scholar
  13. 13.
    Woodruff, P.W.R., Manus, I.C., David, A.S.: Meta analysis of corpus callosum size in schizophrenia. J. Neurol. Neurosurg. Psychiatry 58, 457–461 (1995)CrossRefGoogle Scholar
  14. 14.
    Egaas, B., Courchesne, E., Saitoh, O.: Reduced size of corpus callosum in autism. Arch. Neurol. 52, 794–801 (1995)CrossRefGoogle Scholar
  15. 15.
    Salat, D., Ward, A., Kaye, J.A., Janawsky, J.S.: Sex differences in the corpus callosum with aging. Neurobiology 18, 191–197 (1997)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Roy, S., Bandyopadhyay, S.K.: Abnormal regions detection and quantification with accuracy estimation from MRI of Brain, pp. 611–615. In: Proceedings 2nd IMSNA IEEE, (2013)Google Scholar
  19. 19.
    Roy, S., Chatterjee, K., Bandyopadhyay, S.K.: Segmentation of acute brain stroke from MRI of brain image using power law transformation with accuracy estimation. In: ICACNI-2014, Kolkata, Proceedings, vol. 27, pp. 453–461. Springer (2014)Google Scholar
  20. 20.
    Roy, S., Chatterjee, K., Maitra, I.K., Bandyopadhyay, S.K.: Artefact Removal from MRI of Brain Image. Int. Ref. J. Eng. Sci. (IRJES), 2(3), 24–30 (2013)Google Scholar
  21. 21.
    Roy, S., Ghosh, P., Bandyopadhyay, S.K.: Segmentation and contour extraction of cerebral hemorrhage from MRI of brain by gamma transformation approach. In: Proceedings Springer, AISC 328, FICTA, Bhubaneswar, Orissa (2014)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Shayak Sadhu
    • 1
  • Sudipta Roy
    • 1
  • Siddharth Sadhukhan
    • 2
  • S K Bandyopadhyay
    • 3
  1. 1.Department of Computer Science and EngineeringAcademy of TechnologyAdisaptagramIndia
  2. 2.Master in Computer ApplicationAcademy of TechnologyAdisaptagramIndia
  3. 3.Department of Computer Science and EngineeringUniversity of CalcuttaKolkataIndia

Personalised recommendations