Parameter Optimization of Support Vector Machine by Improved Ant Colony Optimization

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)

Abstract

Support vector machine (SVM) is one of the significant classification technique and it can be applied in various areas like meteorology, financial data analysis, etc. The performance of SVM is influenced by parameters like C, which is cost constant and kernel parameter. In this paper, an improved ant colony optimization (IACO) technique is proposed to optimize the parameters of the SVM. To evaluate the proposed approach, the experiment adopts two benchmark datasets. The developed approach was compared with the ACO–SVM algorithm proposed by Zhang et al. The experimental results of the simulation show that performance of the proposed method is encouraging.

Keywords

Support vector machines Ant colony optimization Parameter optimization 

References

  1. 1.
    Vapnik, V.: The nature of statistical learning theory. Springer (1995)Google Scholar
  2. 2.
    Li, X., Zheng, A., Zhang, X., Li, C., Zhang, L.: Rolling element bearing fault detection using support vector machine with improved ant colony optimazation. Measurement 46, 2726–2734 (2013)CrossRefGoogle Scholar
  3. 3.
    Samanta, B., Al-Balushi, K.R., Al-Araimi, S.A.: Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng. Appl. Artif. Intell. 16, 657–665 (2003)CrossRefGoogle Scholar
  4. 4.
    Hou, S., Li, Y.: Short-term fault prediction based on support vector machines with parameter optimization by evolution strategy. Expert Syst. Appl. 36, 12383–12391 (2009)CrossRefGoogle Scholar
  5. 5.
    Wu, Q.: A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Syst. Appl. 37, 2388–2394 (2010)CrossRefGoogle Scholar
  6. 6.
    Wu, Q., Law, R., Wu, E., Lin, J.: A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization. Inf. Sci. 238, 96–110 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, S., Tai, H., Ding, Q., Li, D., Xu, L., Wei, Y.: A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Math. Comput. Model. 58, 458–465 (2013)CrossRefGoogle Scholar
  8. 8.
    Wu, C., Tzeng, G.-H., Goo, Y.-J., Fang, W.-C.: A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. ScienceDirect 32, 397–408 (2007)Google Scholar
  9. 9.
    Patil, S.G., Mandal, S., Hegde, A.V.: Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater. Adv. Eng. Softw. 45, 203–212 (2012)CrossRefGoogle Scholar
  10. 10.
    Chen, F., Tang, B., Chen, R.: A noval fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm. Measurement 46, 220–232 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lin, S.-W., Lee, Z.-J., Chen, S.-C., Tseng, T.-Y.: Parameter determination of support vector machine and feature selection using simulated annealing approach. ScieneDirect 8, 1505–1512 (2008)Google Scholar
  12. 12.
    Huang, C.-L., Wang, C.-J.: A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31, 231–240 (2006)CrossRefGoogle Scholar
  13. 13.
    Aydin, I., Karakose, M., Akin, E.: A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl. Soft Comput. 11, 120–129 (2011)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Shao, Y.-H., Wu, T.-R.: A GA-based model selection for smooth twin parametric-margin support vector machine. Pattern Recogn. 46, 2267–2277 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhao, M., Fu, C., Ji, L., Tang, K., Zhou, M.: Feature Selection and parameter optimization for support vector machines; A new approach based on genetic algorithm with feature chromosomes. Expert Syst. Appl. 38, 5197–5204 (2011)CrossRefGoogle Scholar
  16. 16.
    Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter optimization of classifiers. Mach. Learn. 87, 357–380 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yu, Q., Zhang, B., Wang, J.: Parameter Optimization of E-support Vector Machine by Genetic Algorithm. In : International Conference on Natural Computation (2009)Google Scholar
  18. 18.
    Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35, 1817–1824 (2008)CrossRefGoogle Scholar
  19. 19.
    Zhang, X., Chen, X., He, Z.: An ACO-based algoritham for parameter optimization of support vector machines. Expert Syst. Appl. 37, 6618–6628 (2010)CrossRefGoogle Scholar
  20. 20.
    Alwan, H., Ruhana, K., Mahamud, K.: Optimizing Support Vector Machine Parameters Using Continuous Ant Colony Optimization. In: Computing and Convergence Technology (2012)Google Scholar
  21. 21.
    Zhang, X., Chen, X., Zhang, Z., He, Z.: A Grid-based ACO Algorithm for Parameters Optimization in Support Vector Machines. In: IEEE International Conference (2008)Google Scholar
  22. 22.
    Vapnik, V.: An Overview of Statistical Learning Theory. In: IEEE Transactions on Neural Networks, New York, vol. 10, p. 12 (1999)Google Scholar
  23. 23.
    Cristianini, N., Taylor, J.: An introduction to support Vector Machines: and other kernel-based learning methods. (2000)Google Scholar
  24. 24.
    Wang, L.: Support vector Machine Theory and Applications. Springer (2005)Google Scholar
  25. 25.
    Duan, K., Keerthi, S., Poo, A.: Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51, 41–59 (2003)CrossRefGoogle Scholar
  26. 26.
    Imbault, F., Lebart, K.: A stochastic optimization approach for parameter tuning of support vector machines. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 1051–4651 (2004)Google Scholar
  27. 27.
    Olivier, C., Vladimir, V., Olivier, B., Sayan, M.: Choosing Multiple Parameters for Support Vector Machines. Mach. Learn. 46, 131–159 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Computer Science & Engineering DepartmentGIT, GITAM UniversityVisakhapatnamIndia

Personalised recommendations