Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 379))

  • 1243 Accesses

Abstract

This paper proposes a technique for designing low-leakage stable SRAM cell which can mitigate impact of V t (threshold voltage) variation. The architecture of the proposed transmission gate-based 9-transistor SRAM cell (TG9T) is almost similar to that of 7-transistor SRAM cell (7T) except the access transistors, which are replaced with transmission gates. In this study, various key design metrics like noise margin, leakage current, and hold power are simulated for both cells and compared. The proposed design provides 1.25× lower leakage current and 1.46× higher SINM (static current noise margin) while bearing 3.8× penalty in WTI (write trip current) compared with 7T. Proposed design exhibits its robustness by achieving 1.1× tighter spread in hold power compared to 7T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hennessy, J.L., Patterson, V.: Computer architecture: a quantitative approach, Chap. 5. Morgan Kaufman (2006)

    Google Scholar 

  2. Jain, S.K., Agarwal, P.: A low leakage and SNM free SRAM cell design in deep sub micron CMOS technology. In: 2006 19th International Conference VLSI Design, pp. 3–7 Jan 2006

    Google Scholar 

  3. Athe, P., Dasgupta, S.: A comparative study of 6T, 8T and 9T Decanano SRAM cell. IEEE Symposium Industrial Electronics and Applications (ISIEA), vol. 2, pp. 889–894 Oct 2009

    Google Scholar 

  4. Kim, T.-H., Liu, J., Kim, C.H.: A voltage scalable 0.26 V, 64 kb 8T SRAM with Vmin lowering techniques and deep sleep mode. IEEE J. Solid-State Circuits 44(6), 1785–1795 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chang, L., et al.: An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches. IEEE J. Solid-State Circuits 43(4), 956–963 (2008)

    Article  Google Scholar 

  6. Liu, Z., Kursun, V.: Characterization of a novel nine-transistor SRAM cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(4), 488–492 (2008)

    Article  Google Scholar 

  7. Calhoun, B.H., Chandrakasan, A.: A 256-kb sub-threshold SRAM design for ultra-low-voltage operation. IEEE J. Solid-State Circuits 42(3), 680–688 (2007)

    Article  Google Scholar 

  8. Chang, I.J., Kim, J.-J., Park, S.P., Roy, K.: A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 44(2), 650–658 (2009)

    Article  Google Scholar 

  9. Aly, R.E., Bayoumi, M.A.: Low-power cache design using 7T SRAM Cell. IEEE Trans. Circuits Syst.—II: Express Briefs 54(4) (2007)

    Google Scholar 

  10. Vaddi, R., Dasgupta, S., Agarwal, R.P.: Device and circuit co-design robustness studies in the subthreshold logic for ultralow-power applications for 32 nm CMOS. IEEE Trans. Electron Dev. 57, 654–664 (2010)

    Article  Google Scholar 

  11. Seevinck, E., et al.: Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuits SC-22(5), 748–754 (1987)

    Article  Google Scholar 

  12. Islam, A., Hasan, M., Arslan, T.: Variation resilient subthreshold SRAM cell design technique. Int. J. Electron. 99(9), 1223–1237 (2012)

    Article  Google Scholar 

  13. Pal, S., Bhattacharya, A., Islam, A.: Comparative study of CMOS- and FinFET-based 10T SRAM Cell in Subthreshold regime. In: IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 507–511, May 2014

    Google Scholar 

  14. Islam, A., Hasan, M.: Leakage characterization of 10T SRAM cell. IEEE Trans. Electron Dev. 59(3), 631–638 (2012)

    Article  Google Scholar 

  15. Islam, A., Hasan, M.: Variability aware low leakage reliable SRAM cell design technique. Microelectron. Reliabil. 52(6) (2012)

    Google Scholar 

  16. Wann, C. et al.: SRAM cell design for stability methodology. In: Proceedings IEEE VLSI-TSA, pp. 21–22, Apr 2005

    Google Scholar 

  17. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Pal, S., Krishna Madan, Y., Islam, A. (2016). Low-Leakage, Low-Power, High-Stable SRAM Cell Design. In: Satapathy, S., Raju, K., Mandal, J., Bhateja, V. (eds) Proceedings of the Second International Conference on Computer and Communication Technologies. Advances in Intelligent Systems and Computing, vol 379. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2517-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2517-1_53

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2516-4

  • Online ISBN: 978-81-322-2517-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics