PWLCM-Based Random Search for Strong Substitution-Box Design

  • Musheer Ahmad
  • Danish Raza Rizvi
  • Zishan Ahmad
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)


Substitution-boxes are the only source of nonlinearity in various symmetric encryption systems and responsible for inducing confusion of plaintext data. The robustness of these systems exclusively depends on the potentiality of S-boxes. The design methods having fast and simple computations which can yield effective S-boxes are preferred. In this paper, a new chaos-based random search is applied to construct cryptographically potent 8 × 8 S-box. The method explores the features of piecewise linear chaotic map for candidate generation and random search. The optimized S-box obtained is tested against standard statistical tests like bijectivity, equiprobable I/O XOR distribution, nonlinearity, and strict avalanche criteria revealing its superior performance. The proffered substitution-box is further compared with some contemporary chaotic substitution-boxes. The results confirm a consistent design, suitable for building strong block encryption systems.


Random search Piecewise linear chaotic map Substitution-box Nonlinearity Secure communication 


  1. 1.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Menezes, A.J., Oorschot, P.C.V., Vanstone S.A.: Handbook of Applied Cryptography, CRC Press (1997)Google Scholar
  3. 3.
    Ahmad, M., Khan, P.M., Ansari, M.Z.: A simple and efficient key-dependent S-box design using fisher-yates shuffle technique. In: Martínez, P.G., Thampi, S.M., Ko, R., Shu, L. (eds.) SNDS 2014. CCIS, vol. 420, pp. 540–550. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Ahmad, M., Chugh, H., Goel, A., Singla, P.: A chaos based method for efficient cryptographic S-box design. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Pérez, G.M. (eds.) SSCC 2013. CCIS, vol. 377, pp. 130–137. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(8), 2129 (2006)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurcat. Chaos 15(10), 3119–3151 (2005)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kanso, A., Yahyaoui, H., Almulla, M.: Keyed hash function based on a chaotic map. Inf. Sci. 186(1), 249–264 (2012)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hermassi, H., Rhouma, R., Belghith, S.: Improvement of an image encryption algorithm based on hyper-chaos. Telecommun. Syst. 52(2), 539–549 (2013)Google Scholar
  9. 9.
    Webster, A.F., Tavares, S.E.: On the design of S-boxes. Adv. Cryptology Lect. Notes Comput. Sci. 218, 523–534 (1986)CrossRefGoogle Scholar
  10. 10.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4(1), 3–72 (1991)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Youssef, A.M., Tavares, S.E., Gong, G.: On some probabilistic approximations for AES-like S-boxes. Discrete Math. 306(16), 2016–2020 (2006)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circ. Syst. 48(2), 163–169 (2001)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Cusick, T.W., Stanica, P.: Cryptographic Boolean Functions and Applications. Elsevier, Amsterdam (2009)Google Scholar
  14. 14.
    Tang, G., Liao, X., Chen, Y.: A novel method for designing S-boxes based on chaotic maps. Chaos, Solitons Fractals 23(2), 413–419 (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Chen, G., Chen, Y., Liao, X.: An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps. Chaos, Solitons Fractals 31(3), 571–577 (2007)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, Y., Wong, K.W., Liao, X., Xiang, T.: A block cipher with dynamic S-boxes based on tent map. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3089–3099 (2009)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Özkaynak, F., Özer, A.B.: A method for designing strong S-boxes based on chaotic Lorenz system. Phys. Lett. A 374(36), 3733–3738 (2010)MATHCrossRefGoogle Scholar
  18. 18.
    Khan, M., Shah, T., Mahmood, H., Gondal, M.A.: An efficient method for the construction of block cipher with multi-chaotic systems. Nonlinear Dyn. 71(3), 489–492 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Khan, M., Shah, T.: An efficient construction of substitution box with fractional chaotic system. SIViP (2013). doi: 10.1007/s11760-013-0577-4 Google Scholar
  20. 20.
    Gondal, M.A., Raheem, A., Hussain, I.: A scheme for obtaining secure S-boxes based on chaotic Baker’s map 3D. Research 5(3), 1–8 (2014)Google Scholar
  21. 21.
    Yin, R., Yuan, J., Wang, J., Shan, X., Wang, X.: Designing key-dependent chaotic S-box with large key space. Chaos, Solitons Fractals 42(4), 2582–2589 (2009)MATHCrossRefGoogle Scholar
  22. 22.
    Szaban, M., Seredynski, F.: Designing cryptographically strong S-boxes with the use of cellular automata. Ann. UMCS Informatica Lublin-Polonia Sectio AI 8(2), 27–41 (2008)MATHGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Musheer Ahmad
    • 1
  • Danish Raza Rizvi
    • 1
  • Zishan Ahmad
    • 1
  1. 1.Department of Computer EngineeringFaculty of Engineering and TechnologyNew DelhiIndia

Personalised recommendations