Molecular Level Insight into the Interactions of SoxC and SoxD from Epsilonproteobacteria Sulfurimonas denitrificans: A Biomolecular Computational Approach

  • Sujay Ray
  • Arundhati Banerjee
  • Angshuman Bagchi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)


In deep seabeds, sulfide oxidation is essential for metabolism by microbes all through the seafloor. For the purpose, the organism Sulfurimonas denitrificans utilizes the gene cluster-sox (sulfur oxidizing). It comprises two units: soxXYZAB and soxZYCD. SoxCD complex formation is paramount for entire oxidation of sulfide and thiosulfate to sulfate. Herein for a computational molecular-level analysis, 3D models of SoxC and SoxD proteins were constructed by discrete molecular modeling techniques. Protein–protein docking generated SoxCD complex. Few stability calculating parameters revealed the simulated final protein complex as a highly stable one. Solvent accessibility value of the MD-simulated complex also disclosed it as the most interactive one. Identification of responsible amino acids for protein–protein interactions investigated that Asn145 from SoxD and His8 from SoxC played pivotal roles for the interactions to turn out stronger. Current study thereby provides a proposal for molecular mechanism and biophysical analysis of sulfur oxidation process to render a safe biota.


Sulfur oxidation Molecular modeling Sox operon Protein–Protein interaction Molecular docking And energy optimization 



The authors would like to thank the DST-PURSE programme 2012–2015 going on in the Department of Biochemistry and Biophysics, University of Kalyani for providing different instrumental and infrastructural support. The author is also thankful to the DBT sponsored Bioinformatics Infrastructure Facility in the Department of Biochemistry and Biophysics, University of Kalyani for the necessary support.


  1. 1.
    Nancy, H., Akerman, D., Butterfield, A., Huber, J.A.: Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol. 4, 185 (2013)Google Scholar
  2. 2.
    Friedrich, C.G.: Physiology and genetics of sulfur-oxidizingbacteria. Adv. Microb. Physiol. 39, 235–289 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kletzin, A., Urich, T., Muller, F., Bandeiras, T.M., Gomes, C.M.: Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J. Bioenerg. Biomembr. 36, 77–91 (2004)CrossRefGoogle Scholar
  4. 4.
    Friedrich, C.G., Bardischewsky, F., Rother, D., Quentmeier, A., Fischer, J.: Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259 (2005)CrossRefGoogle Scholar
  5. 5.
    Frigaard, N.U., Dahl, C.: Sulfur metabolism in phototrophic sulfur bacteria. Adv. Microb. Physiol. 54, 103–200 (2009)CrossRefGoogle Scholar
  6. 6.
    Kappler, U., Dahl, C.: Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol. Lett. 203, 1–9 (2001)CrossRefGoogle Scholar
  7. 7.
    Friedrich, C.G., Quentmeier, A., Bardischewsky, F., Rother, D., Kraft, R., Kostka, S., Prinz, H.: Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J. Bacteriol. 182, 4677–4687 (2000)CrossRefGoogle Scholar
  8. 8.
    Mukhopadhyaya, P.N., Deb, C., Lahiri, C., Roy, P.: A soxA gene, encoding a diheme cytochrome c, and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J. Bacteriol. 182, 4278–4287 (2000)CrossRefGoogle Scholar
  9. 9.
    Rother, D., Henrich, H.J., Quentmeier, A., Bardischewsky, F., Friedrich, C.G.: Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J. Bacteriol. 183, 4499–4508 (2001)CrossRefGoogle Scholar
  10. 10.
    Appia-Ayme, C., Berks, B.C.: SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem Biophys Res Commun. 296, 737–741 (2002)CrossRefGoogle Scholar
  11. 11.
    Ghosh, W., Dam, B.: Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol. Rev. 33(6), 999–1043 (2009)CrossRefGoogle Scholar
  12. 12.
    Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier, A., Fischer, J.: Oxidation ofreduced inorganic sulfurcompoundsbybacteria: emergenceofacommon mechanism? Appl. Environ. Micro-biol. 67, 2873–2882 (2001)CrossRefGoogle Scholar
  13. 13.
    Zander, U., Faust, A., Klink, B.U., de Sanctis, D., Panjikar, S., Quentmeier, A., Bardischewsky, F., Friedrich, C.G., Scheidig, A.J.: Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD. J. Biol. Chem. 286(10), 8349–8360 (2011)CrossRefGoogle Scholar
  14. 14.
    Altschul, S.F., et al.: Basic local alignment search tool. J. Mol. Biol. 25, 403–410 (1990)CrossRefGoogle Scholar
  15. 15.
    Berman, M.H., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). doi: 10.1093/nar/28.1.235 CrossRefGoogle Scholar
  16. 16.
    Söding, J., Biegert, A., Lupas, A.N.: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005). Web Server issue. doi: 10.1093/nar/gki408
  17. 17.
    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., Schwede, T.: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42(W1), W252–W258 (2014)CrossRefGoogle Scholar
  18. 18.
    Fiser, A., Sali, A.: ModLoop: automated modeling of loops in protein structures. Bioinformatics 19(18), 2500–2501 (2003)CrossRefGoogle Scholar
  19. 19.
    Xu, D., Zhang, Y.: Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 101, 2525–2534 (2001). doi: 10.1016/j.bpj.2011.10.024 CrossRefGoogle Scholar
  20. 20.
    Laskowski, R.A., et al.: PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)CrossRefGoogle Scholar
  21. 21.
    Eisenberg, D., et al.: VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 277, 396–404 (1997)CrossRefGoogle Scholar
  22. 22.
    Colovos, C., Yeates, T.O.: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993)CrossRefGoogle Scholar
  23. 23.
    Ramachandran, G.N., Sashisekharan, V.: Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–438 (1968)Google Scholar
  24. 24.
    Comeau, S.R., et al.: ClusPro: An automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45–50 (2004)CrossRefGoogle Scholar
  25. 25.
    Ramachandran, S., Kota, P., Ding, F., Dokholyan, N.V.: PROTEINS: Structure. Funct. Bioinform. 79, 261–270 (2011)CrossRefGoogle Scholar
  26. 26.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)CrossRefGoogle Scholar
  27. 27.
    Maleki, M., Vasudev, G., Rueda, L.: The role of electrostatic energy in prediction of obligate protein-protein interactions. Proteome Sci. 11, S11 (2013). doi: 10.1186/1477-5956-11-S1-S11
  28. 28.
    Camacho, C.J., Zhang, C.: FastContact: rapid estimate of contact and binding free energies. Bioinformatics 21(10), 2534–2536 (2005)CrossRefGoogle Scholar
  29. 29.
    Tina, K.G., Bhadra, R., Srinivasan, N.: PIC: protein interactions calculator. Nucleic Acids Res. 35, W473–W476 (2007)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Sujay Ray
    • 1
  • Arundhati Banerjee
    • 2
  • Angshuman Bagchi
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of KalyaniNadiaIndia
  2. 2.Department of BiotechnologyNational Institute of TechnologyDurgapurIndia

Personalised recommendations