Effect of Defects on Current-Voltage Characteristics of a Silicene ZNR-Based Field Effect Transistor

  • E. Meher Abhinav
  • M. Chandra Mohan
  • A. Suresh Reddy
  • Vemana Chary
  • Maragani Thirupathi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)

Abstract

In this paper, we investigated the behavior of negative differential resistance (NDR) and analysis on various deformations like twist, wrap, and ripple/buckler and defects like vacancy and rough edge on short channel bilayer silicene zigzag nanoribbon (ZNR). Effects are caused by deformations like wrap with 5o and by rippling the channel by 0.5 Å amplitude on 6 nm silicene. FET is evaluated by density functional theory (DFT) and by nonequilibrium green’s function (NEGF) approach. We studied the I–V characteristics of deformations and defects. These characteristics of device with different conditions and mainly negative differential resistance (NDR) behavior are studied.

Keywords

Germanene Zigzag nanoribbon (ZNR) Negative differential resistance (NDR) Metal-oxide-semiconductor field-effect transistor (MOSFET) Non-equilibrium green’s function (NEGF) Density functional theory (DFT) 

Notes

Acknowledgments

The authors thank the department of science and technology of the government of India for partially funding this work.

References

  1. 1.
    Ferain, I., Colinge, C.A., Colinge, J.-P.: Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373), 310–316 (2011)CrossRefGoogle Scholar
  2. 2.
    Eom, B.H., Day, P.K., Zmuidzinas, J.: A wideband, low-noise superconducting amplifier with high dynamic range. Nature 8(8), 623–627 (2012)Google Scholar
  3. 3.
    Yamashita, T., Basker, V.S., Standaert, T.: Sub-25 nm FinFET with advanced fin formation and short channel effect engineering. In: 2011 Symposium on VLSI Technology (VLSIT), Honolulu, HI (2011)Google Scholar
  4. 4.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2003)CrossRefGoogle Scholar
  5. 5.
    Voon, L.C.L., Guzmán-Verri, G.G.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76(7), 075131 (2007)Google Scholar
  6. 6.
    Kara, A., Enriquez, H., Seitsonen, A.P., Lew Yan Voon, L.C., Vizzini, S., Aufray, B., Oughaddou, H.: A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67(1), 1–18 (2012)Google Scholar
  7. 7.
    Drummond, N.D., Zólyomi, V., Fal’ko, V.I.: Electrically tunable band gap in silicene. Phys. Rev. B 85(7), 075423 (2012)CrossRefGoogle Scholar
  8. 8.
    Abhinav, E.M., Chary, D.V.: Strain-induced on germanene monolayer 6 nm short channel FET from first-principle study. In: 2014 International Conference on Circuits, Communication, Control and Computing (I4C), pp. 1, 4, 21–22 Nov 2014. doi: 10.1109/CIMCA.2014.7057743
  9. 9.
    Pan, L., Liu, H.J., Tan, X.J., Lv, H.Y., Shi, J., Tangb, X.F., Zhengc, G.: Thermoelectric properties of armchair and zigzag silicene nanoribbons. Phys. Chem. Chem. Phys. 14(39), 13588–13593 (2012)CrossRefGoogle Scholar
  10. 10.
    Fang, D.-Q., Zhang, S.-L., Xu, H.: Tuning the electronic and magnetic properties of zigzag silicene nanoribbons by edge hydrogenation and doping. RSC Adv. 3, 24075–24080 (2013)Google Scholar
  11. 11.
    Song, Y.-L., Zhang, S., Lu, D.-B., Xu, H., Wang, Z., Zhang, Y., Lu, Z-W.: Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. Eur. Phys. J. B 86, 488 (2013)Google Scholar
  12. 12.
    Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Dapeng, Y., Jing, L.: Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012)CrossRefGoogle Scholar
  13. 13.
    Kamal, C.: Controlling band gap in silicene monolayer using external electric field. ArXiv e-prints, no. 1202.2636 (2012)Google Scholar
  14. 14.
    Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80(15), 155453 (2009)Google Scholar
  15. 15.
    Eom, B.M., Day, P.K., Zmuidzinas, J.: A wideband, low-noise superconducting amplifier with high dynamic range. Nature 8(8), 623–627 (2012)Google Scholar
  16. 16.
    Sengupta, A., Mahapatra, S.: Negative differential resistance and effect of defects and deformations in MoS2 armchair nanoribbon metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 114(19), 194513 (2013)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • E. Meher Abhinav
    • 1
  • M. Chandra Mohan
    • 1
  • A. Suresh Reddy
    • 1
  • Vemana Chary
    • 1
  • Maragani Thirupathi
    • 1
  1. 1.Department of Electronic and CommunicationsMalla Reddy College of EngineeringHyderabadIndia

Personalised recommendations