Advertisement

Identification of the Plants Based on Leaf Shape Descriptors

  • Pradip Salve
  • Milind Sardesai
  • Ramesh Manza
  • Pravin Yannawar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 379)

Abstract

Plants are living organisms belonging to the vegetal kingdom that can live on land and in water. Plants form the critical base of food chains in nearly all ecosystems. Plants are vitally important for environmental protection and contribute to maintain biodiversity. Plant taxonomy has attracted many researchers to study the bio-diversities based on plants. Automated identification of plant species using leaf shape descriptor addresses the automatic classification of plants and simplifies taxonomic classification process. In this research work, we used Zernike moments (ZM) and Histogram of Oriented Gradient (HOG) method as a shape descriptor resulting 84.66 and 92.67 % accuracy for ZM and HOG, respectively, on ‘VISLeaf’ database.

Keywords

Plant recognition Zernike moments Histogram of oriented gradients Leaf shape 

References

  1. 1.
    Von Ettinghausen, C.R.: Die Blatt-skelette der Dykotyledonen (Kaiserlich Ko¨nigliche Hof-und Stattsdruckerei, Wien (1861)Google Scholar
  2. 2.
    Hickey, L.J.: Am. J. Bot. 60, 17 (1973)CrossRefGoogle Scholar
  3. 3.
    Klucking, E.P.: Leaf Venation Patterns, Vol. 1. J. Cramer, Berlin (1986)Google Scholar
  4. 4.
    Singh, K., Gupta, I., Gupta, S.: SVM-BDT PNN and fourier moment technique for classification of leaf shape. Int. J. Signal Proc. Image Proc. Pattern Recogn. 3(4), (2010)Google Scholar
  5. 5.
    Bama, B.S., Valli, S.M., Raju, S., Kumar, V.A.: Content based leaf image retrieval (CBLIR) using shape, color and texture features. Indian J. Comput. Sci. Eng. 2(2), 202–211 (2011)Google Scholar
  6. 6.
    Jyotismita, C., Parekh, R.: Plant leaf recognition using shape based features and neural network classifiers. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2(10), (2011)Google Scholar
  7. 7.
    Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Leaf classification using shape, color, and texture features. Int. J. Comput. Trends Technol. (2011)Google Scholar
  8. 8.
    Wang, Z., Lu, B., Chi, Z., Feng, D.: Leaf image classification with shape context and SIFT descriptors. In: International Conference on Digital Image Computing: Techniques and Applications (2011)Google Scholar
  9. 9.
    Wijesingha, D., Marikar, F.M.M.T.: Automatic detection system for the identification of plants using herbarium specimen images. Trop. Agric. Res. 23(1), 42–50 (2011)Google Scholar
  10. 10.
    Kadir, A., Nugroho, L.E., Santosa, P.I.: Experiments of Zernike moments for leaf identification. J. Theor. Appl. Inf. Technol. 41(1), (2012)Google Scholar
  11. 11.
    Aptoula, E., Yanikoglu, B.A.: Morphological features for leaf based plant recognition. In: ICIP (2013)Google Scholar
  12. 12.
    Bhardwaj, A., Kaur, M., Kumar, A.: Recognition of plants by leaf image using moment invariant and texture analysis. Int. J. Innov. Appl. Stud. 3(1), 237–248 (2013)Google Scholar
  13. 13.
    Bong, M.F., Sulong, G.B., Mohd Rahim, M.S.: Recognition of leaf based on its tip and base using centroid contour gradient. IJCSI Int. J. Comput. Sci. Issues 10(2), (2013)Google Scholar
  14. 14.
    Satti, V., Satya, A., Sharma, S.: An automatic leaf recognition system for plant identification using machine vision technology. Int. J. Eng. Sci. Technol. (2013)Google Scholar
  15. 15.
    Mouine, S., Yahiaouil, I., Blondet, A.V.: Plant species recognition using spatial correlation between the leaf margin and the leaf salient points. In: ICIP 2013—IEEE International Conference on Image Processing (2013)Google Scholar
  16. 16.
    Kulkarni, A.H., Rai, H.M., Jahagirdar, K.A., Kadko, R.J.: A leaf recognition system for classifying plants using RBPNN and pseudo Zernike moments. Int. J. Latest Trends Eng. Technol. 2, 1–11 (2013)Google Scholar
  17. 17.
    Larese, M.G., Namías, R., Craviotto, R.M., Arango, M.R., Gallo, C., Granitto, P.M.: Automatic classification of legumes using leaf vein image features. Pattern Recogn. 47, 158–168 (2014)CrossRefGoogle Scholar
  18. 18.
    Mythili, C., Kavitha, V.: Recognition of plant leaf in medicine. J. Convergence Inf. Technol. (JCIT) 9, (2014)Google Scholar
  19. 19.
    Pradhan, A.K., Mohanty, P., Behera, S.: A real time based physiological classifier for leaf recognition. Int. J. Adv. Comput. Res. 4, (2014)Google Scholar
  20. 20.
    Amlekar, M., Manza, R.R., Yannawar, P., Gaikwad, A.T.: Leaf features based plant classification using artificial neural network. J. Manag. Res. 3, (2014)Google Scholar
  21. 21.
    Tsolakidis, D.G., Kosmopoulos, D.I., Papadourakis, G.:, Plant leaf recognition using Zernike moments and histogram of oriented gradients. In: Artificial Intelligence: Methods and Applications, pp. 406–417. Springer International Publishing (2014)Google Scholar
  22. 22.
    Michael, V.: Shape classification using Zernike moments. In: Technical Report. iCamp-University of California Irvine (2011)Google Scholar
  23. 23.
    Borde, P., Varpe, A., Manza, R., Yannawar, P.: Recognition of isolated words using Zernike and MFCC features for audio visual speech recognition. Int. J. Speech Technol. (2014)Google Scholar
  24. 24.
    Xiao, X.-Y., Hu, R., Zhang, S.-W., Wang, X.-F., et al.: “HOG-based approach for leaf classification. In: Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, pp. 149–155. Springer Berlin Heidelberg (2010)Google Scholar
  25. 25.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection, pp. 886–893. CVPR, San Diego (2005)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Pradip Salve
    • 1
  • Milind Sardesai
    • 2
  • Ramesh Manza
    • 3
  • Pravin Yannawar
    • 1
  1. 1.Vision & Intelligence Lab, Department of Computer Science and ITDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Floristic Research Lab, Department of BotanyDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  3. 3.Biomedical Image Processing Lab, Department of Computer Science and ITDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations