Skip to main content

Topological and Nontopological 1-Soliton Solution of the Generalized KP-MEW Equation

  • Conference paper
  • First Online:
Mathematical Analysis and its Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 143))

Abstract

In this paper, we obtain the topological and nontopological 1-soliton solution of the generalized Kadomtsev–Petviashvili modified equal width (KP-MEW) equation. The use of solitary wave ansatz method in context of doubly periodic Jacobi elliptic functions is done, which leads to the exact topological and nontopological soliton solutions. The Jacobi elliptic function solution degenerates into solitary wave solution in the limiting case of the modulus parameter. We derive the power law nonlinearity parameter domain for the existence of soliton solution, which is different for the topological and nontopological soliton. Also we identify the parametric restriction on the coefficients for the existence of solitary wave solutions. Finally, the remarkable features of such solitons are demonstrated in several interesting figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelinovsky, D.: Intermediate nonlinear Schrödinger equation for internal waves in a fluid of finite depth. Phys. Lett. A 197, 401–406 (1995)

    Article  Google Scholar 

  2. Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, Berlin (1975)

    Book  Google Scholar 

  3. Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon, Oxford (1990)

    Google Scholar 

  4. Malfliet, W., Hereman, W.: The tanh method. I: exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wazwaz, A.M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 713–723 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, E., Zhang, J.: Application of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bagchi, B., Das, S., Ganguly, A.: New exact solutions of a generalized shallow water wave equation. Phys. Scr. 82, 025003 (2010)

    Google Scholar 

  9. Wang, M.L., Li, X.Z., Zheng, J.L.: The \( \left(G^{\prime }/G\right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Das, A., Ganguly, A.: Some new exact solutions of the (2+1) dimensional potential Kadomstev-Petviashvili equation by the extended \( \left(G^{\prime }/G\right)\)-expansion method. Int. J. Nonlinear Sci. 14, 86–94 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Das, A., Ganguly, A.: A new variation of the \((G^{\prime }/G)\)-expansion method: traveling wave solutions to nonlinear equations. Int. J. Nonlinear Sci. 17, 268–280 (2014)

    MathSciNet  Google Scholar 

  12. Zabusky, N.J., Kruskal, M.D.: Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965)

    Google Scholar 

  13. Bagada, A.V., Melkov, G.A., Serga, A.A., Slavin, A.N.: Parametric interaction of dipolar spin wave solitons with localized electromagnetic pumping. Phys. Rev. Lett. 79, 21372140 (1997)

    Google Scholar 

  14. Scott, M.M., Kostylev, M.P., Kalinikos, B.A., Patton, C.E.: Excitation of bright and dark envelope solitons for magnetostatic waves with attractive nonlinearity. Phys. Rev. B 71, 1–4 (2005)

    Article  Google Scholar 

  15. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Soviet. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  16. Biswas, A.: Soliton perturbation theory for the generalized equal width equation. Pac. J. Appl. Math. 1, 99–103 (2008)

    MathSciNet  Google Scholar 

  17. Wazwaz, A.M.: The tanh and sine-cosine methods for a reliable treatment of the modified equal width equation and its variants. Commun. Nonlinear Sci. Num. Simul. 11, 148–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei, M., Tang, S., Fu, H., Chen, G.: Single peak solitary wave solutions for the generalized KP-MEW \((2,2)\) equation under boundary condition. Appl. Math. Comput. 219, 8979–8990 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ismail, M.S., Petkovic, M.D., Biswas, A.: \(1\)-soliton solution of the generalized KP equation with generalized evolution. Appl. Math. Comput. 216, 2220–2225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Biswas, A.: \(1\)-soliton solution of the generalized camassaHolm Kadomtsev-Petviashvili equation. Commun. Nonlinear Sci. Num. Simul. 14, 2524–2527 (2009)

    Google Scholar 

  21. Biswas, A., Ranasinghe, A.: \(1\)-soliton solution of Kadomtsev-Petviashvili equation with power law nonlinearity. Appl. Math. Comput. 214, 645–647 (2009)

    Google Scholar 

  22. Ebadi, G., Fard, N.Y., Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: Solitons and other solutions to the \((3+1)\)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity. Rom. Rep. Phys. 65, 27–62 (2013)

    Google Scholar 

  23. Biswas, A., Triki, H., Labidi, M.: Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity. Phys. Wave Phenom. 19, 24–29 (2011)

    Article  Google Scholar 

  24. Biswas, A., Ranasinghe, A.: Topological \(1\)-soliton solution of Kadomtsev-Petviashvili equation with power law nonlinearity. Appl. Math. Comput. 217, 1771–1773 (2010)

    Google Scholar 

  25. Palacios, S.L., Fernandez-Diaz, J.M.: Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion. Opt. Commun. 178, 457–460 (2000)

    Article  Google Scholar 

  26. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1963)

    Google Scholar 

  27. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover Publications INC, New York (1965)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge anonymous referees for critical comments and mentioning some useful references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya Das .

Editor information

Editors and Affiliations

Appendix

Appendix

Here we will furnish a primary introduction about elliptic functions (for more details, see [26, 27]). Three Jacobian elliptic functions are defined as

$$\begin{aligned} \mathrm{{sn}}(x,k)=\mathrm{{sin}}~\varphi , \mathrm{{cn}}(x,k)=\mathrm{{cos}}~\varphi , \qquad \mathrm{{dn}}(x,k)=\mathrm{{d}}\varphi /\mathrm{{d}}x \end{aligned}$$
(35)

where the amplitude function \(\varphi (\mathrm{{z}},k)\) is defined by the integral

$$\begin{aligned} \mathrm{{z}}(\varphi ,k)=\int _{0}^{\varphi }\frac{\mathrm{{d}}\tau }{\sqrt{1-k^2\mathrm{{sin}}^2\tau }} \end{aligned}$$
(36)

The square of the real number k is called elliptic modulus parameter and \(k^2\in (0,1)\). Also \(k'^2=1-k^2\) is called complementary modulus parameter. To avoid the complexity, in the text we inhibit the explicit modular dependence and write \(\mathrm{{sn}}x,\mathrm{{cn}}x,\mathrm{{dn}}x\) etc. These are doubly periodic functions of periods \(4K,2iK';4K,4iK'\), and \(2K,4iK'\), respectively, where the quarter-periods K and \(K'\) are the real numbers given by

$$\begin{aligned} K(k)\equiv K=\mathrm{{z}}(\pi /2,k),\qquad K'(k)\equiv K'=K(k') \end{aligned}$$
(37)

K is called complete elliptic integral of second kind. Some useful relations are

$$\begin{aligned} \mathrm{{sn}}^2x+\mathrm{{cn}}^2x=1, \mathrm{{dn}}^2x+k^2\mathrm{{sn}}^2x=1,\qquad k^2\left( \mathrm{{cn}}^2x-1\right) =\mathrm{{dn}}^2x-1 \end{aligned}$$
(38)

the rules of differentiation are

$$\begin{aligned} \mathrm{{sn}}'x=\mathrm{{cn}}x~\mathrm{{dn}}x,\qquad \mathrm{{cn}}'x=-\mathrm{{sn}}x~\mathrm{{dn}}x, \qquad \mathrm{{dn}}'x=-k^2\mathrm{{sn}}x~\mathrm{{cn}}x \end{aligned}$$
(39)

and

$$\begin{aligned} \mathrm{{sn}}(x,k) \xrightarrow [k\rightarrow 0]{k\rightarrow 1} \left\{ \begin{array}{ll} \mathrm{{tanh}}x \\ \mathrm{{sin}}x \end{array} \right. , \quad \mathrm{{cn}}(x,k) \xrightarrow [k\rightarrow 0]{k\rightarrow 1} \left\{ \begin{array}{ll} \mathrm{{sech}}x \\ \mathrm{{cos}}x \end{array} \right. , \quad \mathrm{{dn}}(x,k) \xrightarrow [k\rightarrow 0]{k\rightarrow 1} \left\{ \begin{array}{ll} \mathrm{{sech}}x \\ 1 \end{array} \right. \end{aligned}$$
(40)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Das, A., Ganguly, A. (2015). Topological and Nontopological 1-Soliton Solution of the Generalized KP-MEW Equation. In: Agrawal, P., Mohapatra, R., Singh, U., Srivastava, H. (eds) Mathematical Analysis and its Applications. Springer Proceedings in Mathematics & Statistics, vol 143. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2485-3_22

Download citation

Publish with us

Policies and ethics