Multifunctionalized Carbon Nanotubes Polymer Composites: Properties and Applications

  • Nurhidayatullaili Muhd Julkapli
  • Samira Bagheri
  • S. M. SapuanEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)


Carbon nanotubes (CNTs) is a rigid rod-like nanoscale material produced from carbon in powder, liquid, or gel form via acid or chemical hydrolysis. Due to its unique and exceptional renewability, biodegradability, mechanical, physicochemical properties, and abundance, the incorporation associated with a small quantity of CNTs to polymeric matrices enhance the mechanical and thermal resistance, and also stability of the latter by several orders of magnitude. Moreover, NCC-derived carbon materials are of no serious threat to the environment, providing further impetus for the development and applications of this green and renewable biomaterial for lightweight and degradable composites. Surface functionalization of CNTs remains the focus of CNTs research in tailoring its properties for dispersion in hydrophilic and hydrophobic media. Through functionalization, the attachment of appropriate chemical functionalities between conjugated sp 2 of CNTs and polymeric matrix is established. It is thus of utmost importance that the tools and protocols for imaging CNTs in a complex matrix and quantify its reinforcement, antimicrobial, stability, hydrophilicity, and biodegradability are be developed.


CNTs Composites Polymer Functionalization and applications 


  1. Abe S, Nakayama K, Hayashi D, Akasaka T, Uo M, Watari F, Takada T (2011a) Development of a novel transparent substrate coated by carbon nanotubes through covalent bonding. Phys Procedia 14:147–151Google Scholar
  2. Abe S, Nakayama K, Kobayashi H, Kiba T, Akasaka T, Sato S-I, Uo M, Watari F, Takada T (2011b) Versatile surface modification by carbon nanotubes through an amide-bond formation. Nano Biomed 3(1):208–216Google Scholar
  3. Abu BS, Joohyuk P, Naesung L, Jeungchoon G (2006) Wear behavior of functionalized multi-walled carbon nanotube reinforced epoxy matrix composites. J Compos Mater 40(21):1947–1960Google Scholar
  4. Abu-Abdeen M (2012) Investigation of the rheological, dynamic mechanical, and tensile properties of single-walled carbon nanotubes reinforced poly(vinyl chloride). J Appl Polym Sci 124(4):3192–3199Google Scholar
  5. Adams T, Charles AW (2001) Photo-oxidation of polymeric-inorganic nanocomposites: chemical, thermal stability and fire retardancy investigations. Polym Degrad Stab 74:33–37Google Scholar
  6. Adhikari PD, Jeon S, Cha M-J, Jung DS, Kim Y, Park C-Y (2014) Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material. Sci Technol Adv Mater 15(1):015007Google Scholar
  7. Agnihotri P, Kar KK (2007) Hybrid nanocomposites of carbon nanotubes (CNTs) grown on carbon fiber in polyester matrix with improved thermomechanical properties. In: Proceedings of the annual technical conference—ANTEC, vol 4, pp 2191–2195 Google Scholar
  8. Ahmad AL, Jawad ZA, Low SC, Sharif Zein SH (2013) The functionalization of beta-cyclodextrins on multi walled carbon nanotubes: effects of the dispersant and non aqueous media. Curr Nanosci 9(1):93–102Google Scholar
  9. Albuerne J, Zenkel C, Munirasu S (2013) Functionalization and polymerization on the CNT surfaces. Curr Org Chem 17(17):1867–1879Google Scholar
  10. Alimohammadi F, Parvinzadeh Gashti M, Shamei A (2013) Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res 10(1):123–132Google Scholar
  11. Aljaafari A, Abu-Abdeen M, Aljaafari M (2012) Mechanical and electrical properties of poly(vinyl chloride) loaded with carbon nanotubes and carbon nanopowder. J Thermoplast Compos Mater 25(6):679–699Google Scholar
  12. Amirilargani M, Ghadimi A, Tofighy MA, Mohammadi T (2013) Effects of poly(allylamine hydrochloride) as a new functionalization agent for preparation of poly vinyl alcohol/multiwalled carbon nanotubes membranes. J Membr Sci 447:315–324Google Scholar
  13. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37Google Scholar
  14. Antolín-Cerón VH, Gómez-Salazar S, Soto V, Ávalos-Borja M, Nuño-Donlucas SM (2008) Polymer nanocomposites containing carbon nanotubes and miscible polymer blends based on poly[ethylene-co-(acrylic acid)]. J Appl Polym Sci 108(3):1462–1472Google Scholar
  15. Babaei A, Babazadeh M (2011) Multi-walled carbon nanotubes/chitosan polymer composite modified glassy carbon electrode for sensitive simultaneous determination of levodopa and morphine. Anal Methods 3(10):2400–2405Google Scholar
  16. Bai Y, Xu GY, Sun HY, Hao AY, Mao HZ, Dong SL, Shi XF, Xin X, Ao MQ, Pang JY, Yang XD (2010) Effect of substituted group of β-cyclodextrin derivatives on the dispersing of carbon nanotubes. J Dispers Sci Technol 31(3):353–358Google Scholar
  17. Bal S, Saha S (2014) Assesment of electrical and mechanical properties of carbon nanomaterial doped polymer composites. In: Proceedings of the 2014 international conference on advances in energy conversion technologies—intelligent energy management: technologies and challenges, ICAECT 2014, art no 6757069, pp 99–103Google Scholar
  18. Bandaru NM, Voelcker NH (2012) Glycoconjugate-functionalized carbon nanotubes in biomedicine. J Mater Chem 22(18):8748–8758Google Scholar
  19. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013a) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65(15):1899–1920Google Scholar
  20. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013b) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65(15):1899–1920Google Scholar
  21. Battisti A, Esqué-de los Ojos D, Ghisleni R, Brunner AJ (2014a) Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Compos Sci Technol 95:121–127Google Scholar
  22. Battisti A, Esqué-de los Ojos D, Ghisleni R, Brunner AJ (2014b) Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Compos Sci Technol 95:121–127Google Scholar
  23. Boccaccini AR, Gerhardt L-C (2010) Carbon nanotube composite scaffolds and coatings for tissue engineering applications. Key Eng Mater 441:31–52Google Scholar
  24. Bong SK, Sang HB, Park Y-H, Kim J-H (2006) Polyimide/carbon nanotubes composite films: a potential for FPCB. In: Proceedings of the 2006 international conference on nanoscience and nanotechnology, ICONN, art no 4143419, pp 407–410Google Scholar
  25. Boonbumrung A, Sae-Oui P, Sirisinha C (2013) Dispersion enhancement of multi-walled carbon nanotube (MWCNT) in nitrile rubber (NBR). Adv Mater Res 747:59–62Google Scholar
  26. Bower C, Rosen R, Jin L, Han J, Zhou O (1999) Deformation of carbon nanotubes in nanotube–polymer composites. Appl Phys Lett 74:3317–3320Google Scholar
  27. Braga SS, Marques J, Heister E, Diogo CV, Oliveira PJ, Paz FAA, Santos TM, Marques MPM (2014) Carriers for metal complexes on tumour cells: the effect of cyclodextrins vs CNTs on the model guest phenanthroline-5,6-dione trithiacyclononane ruthenium(II) chloride. BioMetals (article in press)Google Scholar
  28. Breuer O, Uttandaraman S (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645Google Scholar
  29. Brigitte V, Alain P, Claude C, Cédric S, René P, Catherine J, Patrick B, Philippe P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495):1331–1334Google Scholar
  30. Cadambi RM, Ghassemieh E (2012) Optimized process for the inclusion of carbon nanotubes in elastomers with improved thermal and mechanical properties. J Appl Polym Sci 124(6):4993–5001Google Scholar
  31. Callone E, Fletcher JM, Carturan G, Raj R (2008) A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates. J Mater Sci 43(14):4862–4869Google Scholar
  32. Cao M-S, Gao Z-J, Zhu J (2003) Research on microwave absorbability towards CNTs/polyester composites. J Mater Eng 1(2):34–37Google Scholar
  33. Chahine NO, Collette NM, Thompson H, Loots GG (2008) Biocompatibility of carbon nanotubes for cartilage tissue engineering. In: Technical proceedings of the 2008 NSTI nanotechnology conference and trade show, NSTI-nanotech. Nanotechnology 1:125–128Google Scholar
  34. Chehata N, Ltaief A, Bkakri R, Bouazizi A, Beyou E (2014) Conducting polymer functionalized multi-walled carbon nanotubes nanocomposites: optical properties and morphological characteristics. Mater Lett 121:227–230Google Scholar
  35. Chen J, Hsieh K (2010) Polyacrylamide grafted on multi-walled carbon nanotubes for open-tubular capillary electrochromatography: comparison with silica hydride and polyacrylate phase matrices. Electrophoresis 31(23–24):3937–3948Google Scholar
  36. Chen J-L, Lin Y-C (2010) The role of methacrylate polymerized as porous-layered and nanoparticle-bound phases for open-tubular capillary electrochromatography: substitution of a charged monomer for a bulk monomer. Electrophoresis 31(23–24):3949–3958Google Scholar
  37. Chen D, Wang R, Tjiu WW, Liu T (2011) High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers. Compos Sci Technol 71(13):1556–1562Google Scholar
  38. Chen C, Zhang J, Peng F, Su D (2013a) Efficient functionalization of multi-walled carbon nanotubes by nitrogen dioxide. Mater Res Bull 48(9):3218–3222Google Scholar
  39. Chen J, Tong H, Gao Z, Zhu J, Zhang X, Liang Y (2013b) Preparation of polyaniline covalently grafted carbon nanotubes supported Pt catalysts and its electrocatalytic performance for methanol. Acta Chim Sinica 71(12):1647–1655Google Scholar
  40. Chenyang L, Jun Z, Jiasong H, Guohua H (2003) Gelation in carbon nanotube/polymer composites. Polymer 44(24):7529–7532Google Scholar
  41. Cho Y, Borgens RB (2010) The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells. J of Biomed Mater Res Part A 95A(2):510–517Google Scholar
  42. Chris B, Otto Z, Wei ZDJW, Sungho J (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2770Google Scholar
  43. Coto B, Antia I, Blanco M, Martinez-De-Arenaza I, Meaurio E, Barriga J, Sarasua J-R (2011) Molecular dynamics study of the influence of functionalization on the elastic properties of single and multiwall carbon nanotubes. Comput Mater Sci 50(12):3417–3424Google Scholar
  44. Cui C, Qian W, Zhao M, Ding F, Jia X, Wei F (2013) High strength composites using interlocking carbon nanotubes in a polyimide matrix. Carbon 60:102–108Google Scholar
  45. Cyrille R, Fabrice B, Patrick S, Thomas WE, Charles M (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300(5620):775–778Google Scholar
  46. Das A, Stöckelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Klüppel M, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends. Polymer 49(24):5276–5283Google Scholar
  47. Davide P, Charalambos DP, Johan H, Fred B, Ed K, Jean-Paul B, Sylviane M, Maurizio P, Alberto B (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10(10):961–966Google Scholar
  48. Davide PD, Ravi S, McC David, Mathieu E, Jean-Paul B, Maurizio P, Kostas K, Alberto B (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem 116(39):5354–5358Google Scholar
  49. De Borbón F, Ambrosini D, Curadelli O (2014) Damping response of composites beams with carbon nanotubes. Compos B Eng 60:106–110Google Scholar
  50. de Lannoy C-F, Soyer E, Wiesner MR (2013a) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Membr Sci 447:395–402Google Scholar
  51. de Lannoy C-F, Soyer E, Wiesner MR (2013b) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Membr Sci 447:395–402Google Scholar
  52. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178Google Scholar
  53. Dubois P, Alexandre M (2006) Performant clay/carbon nanotube polymer nanocomposites. Adv Eng Mater 8(3):147–154Google Scholar
  54. Ehli C, Guldi DM, Ángeles Herranz M, Martín N, Campidelli S, Prato M (2008) Pyrene-tetrathiafulvalene supramolecular assembly with different types of carbon nanotubes. J Mater Chem 18(13):1498–1503Google Scholar
  55. El Badawi N, Ramadan AR, Esawi AMK, El-Morsi M (2014) Novel carbon nanotube-cellulose acetate nanocomposite membranes for water filtration applications. Desalination 344:79–85Google Scholar
  56. Esteban EU-B, Matthew JK, Virginia AD (2013) Dispersion and rheology of multiwalled carbon nanotubes in unsaturated polyester resin. Macromolecules 46(4):1642–1650Google Scholar
  57. Fang L, Xue Y, Lin H, Shuai C (2011) Friction properties of carbon nanotubes reinforced nitrile composites under water lubricated condition. Adv Mater Res 284–286:611–614Google Scholar
  58. Fangming D, John EF, Karen IW (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci Part B: Polym Phys 41(24):3333–3338Google Scholar
  59. Farsheh AT, Talaeipour M, Hemmasi AH, Khademieslam H, Ghasemi I (2011) Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube. BioResources 6(1):841–852Google Scholar
  60. Feng L, Chen Z (2006) Light-emitting conjugated molecule containing 1,3,4-oxadiazole, carbazole and naphthalene units. Spectrochim Acta Part A: Mol Biomol Spectrosc 63(1):15–20Google Scholar
  61. Fenga W, Baib XD, Liana YQ, Liang J, Wanga XG, Yoshinoc K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41(8):1551–1557Google Scholar
  62. Fisher RA, Watt MR, Jud Ready W (2013) Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2(10):M3170–M3177Google Scholar
  63. Flahaut E, Peigney A, Laurent C, Rousset A (2000) Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes. J Mater Chem 10:249–252Google Scholar
  64. Florian HG, Jacek N, Zbigniew R, Karl S (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370(5):820–824Google Scholar
  65. Fonseca MA, Abreu B, Gonçalves FAMM, Ferreira AGM, Moreira RAS, Oliveira MSA (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99:105–111Google Scholar
  66. Fröhlich E, Meindl C, Höfler A, Leitinger G, Roblegg E (2013) Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes. Nanotoxicology 7(7):1211–1224Google Scholar
  67. Fugetsu B, Sano E, Sunada M, Sambongi Y, Shibuya T, Wang X, Hiraki T (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46(9):1256–1258Google Scholar
  68. Galimberti M, Coombs M, Riccio P, Riccò T, Passera S, Pandini S, Conzatti L, Ravasio A, Tritto I (2013) The role of CNTs in promoting hybrid filler networking and synergism with carbon black in the mechanical behavior of filled polyisoprene. Macromol Mater Eng 298(2):241–251Google Scholar
  69. Gao J-F, Huang H-D, Yan D-X, Ren P-G, Zeng X-B, Li Z-M (2013) Resistivity relaxation of anisotropic conductive polymer composites. J Macromol Sci Part B Phys 52(6):788–796Google Scholar
  70. Gardea F, Lagoudas DC (2014) Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos B Eng 56:611–620Google Scholar
  71. Gary DS, Dimitris CL (2008) A micromechanics model for the thermal conductivity of nanotube-polymer nanocomposites. J Appl Mech 75(4):1–10Google Scholar
  72. Georgiev G, McIntyre MB, Judith R, Gombos EA, Cebe P (2011) Interplay between the crystal and liquid crystalline ordering of iPP and carbon nanotube composites under melt-shear. Mater Res Soc Symp Proc 1308:1–6Google Scholar
  73. Ghasemi S, Karami H, Khanezar H (2014) Hydrothermal synthesis of lead dioxide/multiwall carbon nanotube nanocomposite and its application in removal of some organic water pollutant. J Mater Sci 49(3):1014–1024Google Scholar
  74. Girei SA, Thomas SP, Atieh MA, Mezghani K, De SK, Bandyopadhyay S, Al-Juhani A (2012) Effect of -COOH functionalized carbon nanotubes on mechanical, dynamic mechanical and thermal properties of polypropylene nanocomposites. J Thermoplast Compos Mater 25(3):333–350Google Scholar
  75. Gopalan AI, Lee K-P, Ragupathy D (2009) Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network. Biosens Bioelectron 24(7):2211–2217Google Scholar
  76. Grabowski K, Zbyrad P, Uhl T (2014) Development of the strain sensors based on CNT/epoxy using screen printing. Key Eng Mater 588:84–90Google Scholar
  77. Gu S-Y, Liu L-L, Yan B-B (2014) Effects of ionic solvent-free carbon nanotube nanofluid on the properties of polyurethane thermoplastic elastomer. J Polym Res 21(2), art no 356Google Scholar
  78. Guo Q-H, Zhou X-P, Wang S-Q, Fu H-W, Li Y-H, Hou H-Q (2009) Heat-resistant polyimide electrical conductive composites. Polym Mater Sci Eng 25(2):52–58Google Scholar
  79. Guo Y, Zhu G, Qu P, Jia Y (2014) Toughness enhancement by aligned multi-walled carbon nanotubes pullout from polymer matrix of multi-scale composites. Key Eng Mater 575–576:160–165Google Scholar
  80. Guoxing S, Guangming C, Zhengping L, Ming C (2010) Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon 48(5):1434–1440Google Scholar
  81. Gupta KK, Abbas SM, Srivastava A, Nasim M, Saxena AK, Abhyankar A (2013) Microwave interactive properties of cotton fabrics coated with carbon nanotubes/polyurethane composite. Indian J Fibre Text Res 38(4):357–365Google Scholar
  82. Gurunathan T, Rao CRK, Narayan R, Raju KVSN (2013) Polyurethane conductive blends and composites: synthesis and applications perspective. J Mater Sci 48(1):67–80Google Scholar
  83. Haggenmuellera R, Gommansb HH, Rinzlerb AG, Fischera JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330(3):219–225Google Scholar
  84. Han T, Qu L, Luo Z, Wu X, Zhang D (2014) Enhancement of hydroxyl radical generation of a solid state photo-Fenton reagent based on magnetite/carboxylate-rich carbon composites by embedding carbon nanotubes as electron transfer channels. New J Chem 38(3):942–948Google Scholar
  85. Hao XY, Chien A-T, Hua XY, Lu J, Liu YD (2013) Dispersion of pristine CNTs in UHMWPE solution to prepare CNT/UHMWPE composite fibre. Mater Res Innov 17(Suppl 1):123–125Google Scholar
  86. Hashmi S, Ghavaminejad A, Obiweluozor FO, Vatankhah-Varnoosfaderani M, Stadler FJ (2012) Supramolecular interaction controlled diffusion mechanism and improved mechanical behavior of hybrid hydrogel systems of zwitterions and cnt. Macromolecules 45(24):9804–9815Google Scholar
  87. Haznedar G, Cravanzola S, Zanetti M, Scarano D, Zecchina A, Cesano F (2013) Graphite nanoplatelets and carbon nanotubes based polyethylene composites: electrical conductivity and morphology. Mater Chem Phys 143(1):47–52Google Scholar
  88. He Z, Zhang X, Chen M, Li M, Gu Y, Zhang Z, Li Q (2013) Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. J Appl Polym Sci 129(6):3366–3372Google Scholar
  89. He Q, Yuan T, Yan X, Ding D, Wang Q, Luo Z, Shen TD, Wei S, Cao D, Guo Z (2014) Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight. Macromol Chem Phys 215(4):327–340Google Scholar
  90. Heidari A, Beheshty MH, Rahimi H (2013) Functionalization of multi-walled carbon nanotubes via direct friedel-crafts acylation in an optimized PPA/P2O5 medium. Fuller Nanotubes Carbon Nanostruct 21(6):516–524Google Scholar
  91. Hida S, Shiga T, Maruyama S, Elliott JA, Shiomi J (2012) Influence of thermal boundary resistance and interfacial phonon scattering on heat conduction of carbon nanotube/polymer composites. Trans Jpn Soc Mech Eng Part B 78(787):634–643Google Scholar
  92. Hilmi Y, Seyhana TA, Servet T, Metin T, Wolfgang B, Karl S (2010) Electric field effects on CNTs/vinyl ester suspensions and the resulting electrical and thermal composite properties. Compos Sci Technol 70(14):2102–2110Google Scholar
  93. Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev 59:R2514–R2520Google Scholar
  94. Hongjie D (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044Google Scholar
  95. Hordy N, Coulombe S, Meunier J-L (2013) Plasma functionalization of carbon nanotubes for the synthesis of stable aqueous nanofluids and poly(vinyl alcohol) nanocomposites. Plasma Process Polym 10(2):110–118Google Scholar
  96. Hossain ME, Hossain MK, Hosur MV, Jeelani S(2011) Investigation of carbon nanofibers (CNFs) effects on the flexural and thermal behavior of E-glass/polyester composites. In: Proceedings of the ASME international mechanical engineering congress and exposition (IMECE), vol 12, pp 135–143Google Scholar
  97. Hsu-Chiang K, Chen-Chi MM, Wei-Ping C, Siu-Ming Y, Hsin-Ho W, Tzong-Ming L (2006) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65(11):1703–1710Google Scholar
  98. Hua L, Brinson LC (2005) A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites. J Appl Mech 73(5):758–768Google Scholar
  99. Huaming L, Fuyong C, Andy MD, Alex A (2005) Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J Am Chem Soc 127(41):14518–14524Google Scholar
  100. Huang J-Q, Zhang Q, Zhang S-M, Liu X-F, Zhu W, Qian W-Z, Wei F (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106Google Scholar
  101. Huang G, Wang S, Song P, Wu C, Chen S, Wang X (2014a) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos A Appl Sci Manuf 59:18–25Google Scholar
  102. Huang J, Gao M, Pan T, Zhang Y, Lin Y (2014b) Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos Sci Technol 95:16–20Google Scholar
  103. Huang J, Gao M, Pan T, Zhang Y, Lin Y (2014c) Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos Sci Technol 95:16–20Google Scholar
  104. Huisheng P (2008) Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity. J Am Chem Soc 130(1):42–43Google Scholar
  105. Hutchisona JL, Kiselevb NA, Krinichnayac AEP, Krestininc AV, Loutfyd RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39:761–770Google Scholar
  106. Hwa-Jeong L, Se-Jin O, Ja-Young C, Jin WK, Jungwan H, Loon-Seng T, Jong-Beom B (2005) In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem Mater 17(20):5057–5064Google Scholar
  107. Hyang HS, Jae WC, Nanda GS (2007) Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 43(9):3750–3756Google Scholar
  108. Ibrahim S, Yasin SMM, Nee NM, Ahmad R, Johan MR (2012) Conductivity, thermal and infrared studies on plasticized polymer electrolytes with carbon nanotubes as filler. J Non-Cryst Solids 358(2):210–216Google Scholar
  109. Itoh E, Kato Y, Sano Y, Miyairi K (2008) Field emission from conducting polymer/single-walled carbon nanotube composite prepared by AC coupled electrophoresis. Jpn J Appl Phys 47(4 PART 1):2016–2020Google Scholar
  110. Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, Chuttani K, Mishra AK (2011) Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 24(11):2028–2039Google Scholar
  111. Jeena JK, Narasimha Murthy HNM, Rai KS, Krishna M, Sreejith M (2010) Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites. Polym Bull 65(8):849–861Google Scholar
  112. Jerez J, Isaguirre AC, Bazán C, Martinez LD, Cerutti S (2014) Determination of scandium in acid mine drainage by ICP-OES with flow injection on-line preconcentration using oxidized multiwalled carbon nanotubes. Talanta 124:89–94Google Scholar
  113. Jia X, Zhang Q, Zhao M-Q, Xu G-H, Huang J-Q, Qian W, Lu Y, Wei F (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22(14):7050–7056Google Scholar
  114. Jian PL (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300Google Scholar
  115. Jiang F, Wang Y, Hu X, Shao N, Na N, Delanghe JR, Ouyang J (2010) Carbon nanotubes-assisted polyacrylamide gel electrophoresis for enhanced separation of human serum proteins and application in liverish diagnosis. J Sep Sci 33(21):3393–3399Google Scholar
  116. Jiang J, Xiao H, Li H (2013a) Electrical resistivity and piezoresistivity of Ni-CNT filled epoxy-based composites. In: Proceedings of SPIE—the international society for optical engineering, vol 8689, art no 86890WGoogle Scholar
  117. Jiang Y, Zhang H, Wang Y, Chen M, Ye S, Hou Z, Ren L (2013b) Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS ONE 8(6), art no e65756Google Scholar
  118. Jiang L, Zhang C, Liu M, Yang Z, Tjiu WW, Liu T (2014a) Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrid. Compos Sci Technol 91:98–103Google Scholar
  119. Jiang Q, Wang X, Zhu Y, Hui D, Qiu Y (2014b) Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos B Eng 56:408–412Google Scholar
  120. Jin S, Matuana LM (2010) Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride).cap layer. Polym Int 59(5):648–657Google Scholar
  121. Joseph W, Jinhua D, Travis Y (2005) Carbon nanotube—conducting-polymer composite nanowires. Lagmuir 21(1):9–12Google Scholar
  122. Journet C, Maser WK, Bernier P, Loiseau A, Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1995) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758Google Scholar
  123. Jung Y-T, Park Y-B (2013) Carbon-nanotube-based structural health monitoring for wind turbine applications. In: Proceedings of the international SAMPE technical conference, pp 2902–2909Google Scholar
  124. Kanagaraj S (2010) Polyethylene nanotube nanocomposites, polymer nanotube nanocomposites: synthesis, properties, and applications, pp 113–139Google Scholar
  125. Kanagaraj S, Fonseca A, Guedes RM, Oliveira MSA, Simoes JAO (2011) Thermo-mechanical behaviour of ultrahigh molecular weight polyethylene-carbon nanotubes composites under different cooling techniques. Defect Diffus Forum 312–315:331–340Google Scholar
  126. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397Google Scholar
  127. Kenji H, Don NF, Kohei M, Tatsunori N, Motoo Y, Sumio I (2000) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700):1362–1364Google Scholar
  128. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958Google Scholar
  129. Kim BS, Bae SH, Park Y-H, Kim J-H (2007) Preparation and characterization of polyimide/carbon-nanotube composites. Macromol Res 15(4):357–362Google Scholar
  130. Kim B-J, Byun J-H, Park S-J (2010) Effects of graphenes/CNTs co-reinforcement on electrical and mechanical properties of HDPE matrix nanocomposites. Bull Korean Chem Soc 31(8):2261–2264Google Scholar
  131. Kim H-K, Roh KC, Kang K, Kim K-B (2013a) Synthesis of nano-Li4Ti5O12 decorated on non-oxidized carbon nanotubes with enhanced rate capability for lithium-ion batteries. RSC Adv 3(34):14267–14272Google Scholar
  132. Kim M-S, Yan J, Kang K-M, Joo K-H, Kang Y-J, Ahn S-H (2013b) Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. Int J Precis Eng Manuf 14(6):1087–1092Google Scholar
  133. Kim Y-H, Park S, Won K, Kim HJ, Lee SH (2013c) Bacterial cellulose-carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase. J Chem Technol Biotechnol 88(6):1067–1070Google Scholar
  134. Ko H-H, Cheng Y-Y, Dai C-A (2014) Silane modified multiwall carbon nanotubes/polyimide composites prepared using in-situ polymerization. Nanosci Nanotechnol Lett 6(3):190–196Google Scholar
  135. Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14(4):1160–1165Google Scholar
  136. Korayem AH, Barati MR, Simon GP, Zhao XL, Duan WH (2014) Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch. Compos A Appl Sci Manuf 61:126–133Google Scholar
  137. Kotchey GP, Zhao Y, Kagan VE, Star A (2013) Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Adv Drug Deliv Rev 65(15):1921–1932Google Scholar
  138. Krause RWM, Mamba BB, Dlamini LN, Durbach SH (2010) Fe-Ni nanoparticles supported on carbon nanotube-co-cyclodextrin polyurethanes for the removal of trichloroethylene in water. J Nanopart Res 12(2):449–456Google Scholar
  139. Kulathunga DDTK, Ang KK (2014) Modeling and simulation of buckling of embedded carbon nanotubes. Comput Mater Sci 81:233–238Google Scholar
  140. Kumar Sachdev V, Bhattacharya S, Patel K, Kumar Sharma S, Chand Mehra N, Pal Tandon R (2013) Electrical and EMI shielding characterization of multiwalled carbon nanotube/polystyrene composite. J Appl Polym SciGoogle Scholar
  141. Kuzhir P, Paddubskaya A, Plyushch A, Volynets N, Maksimenko S, MacUtkevic J, Kranauskaite I, Banys J, Ivanov E, Kotsilkova R, Celzard A, Fierro V, Zicans J, Ivanova T, Merijs Meri R, Bochkov I, Cataldo A, Micciulla F, Bellucci S, Lambin P (2013) Epoxy composites filled with high surface area-carbon fillers: optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. J Appl Phys 114(16), art no 164304Google Scholar
  142. Le HH, Sriharish MN, Henning S, Klehm J, Menzel M, Frank W, Wießner S, Das A, Stöckelhuber K-W, Heinrich G, Radusch H-J (2014) Dispersion and distribution of carbon nanotubes in ternary rubber blends. Compos Sci Technol 90:180–186Google Scholar
  143. Lee D, Cui T (2011) Suspended carbon nanotube nanocomposite beams with a high mechanical strength via layer-by-layer nano-self-assembly. Nanotechnology 22(16), art no 165601Google Scholar
  144. Lee M, Ku SH, Ryu J, Park CB (2010) Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization. J Mater Chem 20(40):8848–8853Google Scholar
  145. Lee G-H, Min K-M, Kim D-W (2013) Synthesis and Li electroactivity of MnS/carbon nanotube composites. J Korean Ceram Soc 50(6):539–544Google Scholar
  146. Lei J, Ju H (2010) Nanotubes in biosensing. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2(5):496–509Google Scholar
  147. Lertrojanachusit N, Pornsunthorntawee O, Kitiyanan B, Chavadej J, Chavadej S (2013) Separation and purification of carbon nanotubes using froth flotation with three sequential pretreatment steps of catalyst oxidation, catalyst removal, and silica dissolution. Asia-Pac J Chem Eng 8(6):830–842Google Scholar
  148. Li J, Bai T (2011) The effect of CNT modification on the mechanical properties of polyimide composites with and without MoS2. Mech Compos Mater 1–6Google Scholar
  149. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274(5293):1701–1703Google Scholar
  150. Li YB, Wei BQ, Liang J, Yu Q, Wu DH (1999) Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37:493–497Google Scholar
  151. Li Z, Chen H, Zhu Z, Zhang Y (2011) Study on thermally conductive ESBR vulcanizates. Polym Bull 67(6):1091–1104Google Scholar
  152. Li Y, Chen YF, Feng YY, Zhao SL, Lü P, Yuan XY, Feng W (2012) Progress of synthesizing methods and properties of fluorinated carbon nanotubes. Sci China Technol Sci 53(5):1225–1233Google Scholar
  153. Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao Y-P, Wang M, Li Z, Hwang AA, Song T-B, Xu R, Yang Y, Zink JI, Nel AE, Xia T (2013a) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7(3):2352–2368Google Scholar
  154. Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao Y-P, Wang M, Li Z, Hwang AA, Song T-B, Xu R, Yang Y, Zink JI, Nel AE, Xia T (2013b) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7(3):2352–2368Google Scholar
  155. Li S, Guo ZP, Wang CY, Wallace GG, Liu HK (2013c) Flexible cellulose based polypyrrole-multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. J Mater Chem A 1(45):14300–14305Google Scholar
  156. Li W, He D, Bai J (2013d) The influence of nano/micro hybrid structure on the mechanical and self-sensing properties of carbon nanotube-microparticle reinforced epoxy matrix composite. Compos A Appl Sci Manuf 54:28–36Google Scholar
  157. Li X, Pignatello JJ, Wang Y, Xing B (2013e) New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environ Sci Technol 47(15):8334–8341Google Scholar
  158. Li J, Chen C, Zhang S, Ren X, Tan X, Wang X (2014) Critical evaluation of adsorption-desorption hysteresis of heavy metal ions from carbon nanotubes: Influence of wall number and surface functionalization. Chem Asian J 9(4):1144–1151Google Scholar
  159. Liang F, Tang Y, Gou J, Gu C, Song G (2009) Multifunctional nanocomposites with high damping performance for aerospace structures. Mech Solids Struct Fluids 11:1–10Google Scholar
  160. Liao L, Wang X, Fang P, Liew KM, Pan C (2011) Interface enhancement of glass fiber reinforced vinyl ester composites with flame-synthesized carbon nanotubes and its enhancing mechanism. ACS Appl Mater Interfaces 3(2):534–538Google Scholar
  161. Likozar B (2010) Diffusion of ionic liquids into elastomer/carbon nanotubes composites and tensile mechanical properties of resulting materials. Scientia Iranica 17(1 F):35–42Google Scholar
  162. Lin X-P, Guan P, Hu X-L, Tang Y-M (2011a) Preparation of carbon nanotube composites in ionic liquids. Mod Chem Indus 31(9):14–18Google Scholar
  163. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578Google Scholar
  164. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011c) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504Google Scholar
  165. Liu Z, Zhao L, Chen M, Yu J (2011) Effect of carboxylate multi-walled carbon nanotubes on the performance of thermoplastic starch nanocomposites. Carbohydr Polym 83(2):447–451Google Scholar
  166. Liu J, Liu R, Jiang J, Liu X (2013a) Design and synthesis of water-soluble photosensitive α-cyclodextrin and its application in dispersing carbon nanotubes. J Appl Polym Sci 130(4):2588–2593Google Scholar
  167. Liu M, Zhang C, Tjiu WW, Yang Z, Wang W, Liu T (2013b) One-step hybridization of graphene nanoribbons with carbon nanotubes and its strong-yet-ductile thermoplastic polyurethane composites. Polym (UK) 54(12):3124–3130Google Scholar
  168. Liu X-M, Gao F, Cai W-T, Liu P, Miao W, Huang Y (2013c) Analysis of pressure-resistance calculating model of carbon nanotubes/carbon black/silicone rubber composite material. J Funct Mater 44(5):669–672Google Scholar
  169. Liu C-C, Sadhasivam S, Savitha S, Lin F-H (2014a) Fabrication of multiwalled carbon nanotubes-magnetite nanocomposite as an effective ultra-sensing platform for the early screening of nasopharyngeal carcinoma by luminescence immunoassay. Talanta 122:195–200Google Scholar
  170. Liu L, Zhang H, Zhou Y (2014b) Quasi-static mechanical response and corresponding analytical model of laminates incorporating with nanoweb interlayers. Compos Struct 111(1):436–445Google Scholar
  171. Liu T, Yang F, Li Y, Ren L, Zhang L, Xu K, Wang X, Xu C, Gao J (2014c) Plasma synthesis of carbon nanotube-gold nanohybrids: efficient catalysts for green oxidation of silanes in water. J Mater Chem A 2(1):245–250Google Scholar
  172. Liu X-L, Lu H-J, Xing L-Y (2014d) Morphology and microwave absorption of carbon nanotube/bismaleimide foams. J Appl Polym Sci 131(9), art no 40233Google Scholar
  173. Liu Z, Dong X, Song L, Zhang H, Liu L, Zhu D, Song C, Leng X (2014e) Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway. J Biomed Mater Res Part A 102(3):665–673Google Scholar
  174. Loos MR, Manas-Zloczower I (2013) Micromechanical models for carbon nanotube and cellulose nanowhisker reinforced composites. Polym Eng Sci 53(4):882–887Google Scholar
  175. Loos MR, Nahorny J, Fontana LC (2013a) Plasma modification of carbon nanotubes. Curr Org Chem 17(17):1880–1893Google Scholar
  176. Loos MR, Yang J, Feke DL, Manas-Zloczower I, Unal S, Younes U (2013b) Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Compos B Eng 44(1):740–744Google Scholar
  177. López Manchadoa MA, Valentinib L, Biagiottib J, Kennyb JM (2006) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43(7):1499–1505Google Scholar
  178. Lu Y-M, Gong Q-M, Liang J (2009) Preparation of carbon nanotubes/activated carbon composite microspheres and their application to adsorption of VB12. Acta Phys Chim Sin 25(8):1697–17202Google Scholar
  179. Lu W, Ding G, Wang Y, Deng M, Zhou Z (2011) Nanomanufacturing of multi-walled carbon nanotubes enhanced electrochemical electrode through surface micromachining. Int J Nanomanuf 7(2):104–115Google Scholar
  180. Lu D, Lin S, Wang L, Li T, Wang C, Zhang Y (2014) Sensitive detection of luteolin based on poly(diallyldimethylammonium chloride)-functionalized graphene-carbon nanotubes hybrid/β-cyclodextrin composite film. J Solid State Electrochem 18(1):269–278Google Scholar
  181. Ma Y, Wu D, Liu Y, Li X, Qiao H, Yu Z-Z (2014a) Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding. Compos B Eng 56:384–391Google Scholar
  182. Ma Y, Wu D, Liu Y, Li X, Qiao H, Yu Z-Z (2014b) Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding. Compos B Eng 56:384–391Google Scholar
  183. Maizatulnisa O, Tan KH, Mohd Yusof H, Halisanni K, Ruzaidi G, Nazarudin Z, Paridah T, Noor Azlina H (2013) Effects of multi-walled carbon nanotubes (MWCNTS) on the mechanical and thermal properties of plasticized polylactic acid nanocomposites. Adv Mater Res 812:181–186Google Scholar
  184. Makki A, Sami B, Mohamed NB, Alain D, Alessandro G (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98(3):974–984Google Scholar
  185. Mallakpour S, Zadehnazari A (2013) Functionalization of multiwalled carbon nanotubes with S-valine amino acid and its reinforcement on amino acid-containing poly(amide-imide) bionanocomposites. High Perform Polym 25(8):966–979Google Scholar
  186. Mamunya Ye, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M (2008) Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos Sci Technol 68(9):1981–1988Google Scholar
  187. Mao H, Kawazoe N, Chen G (2014) Cellular uptake of single-walled carbon nanotubes in 3D extracellular matrix-mimetic composite collagen hydrogels. J Nanosci Nanotechnol 14(3):2487–2492Google Scholar
  188. Mari D, Schaller R (2009) Mechanical spectroscopy in carbon nanotube reinforced ABS. Mater Sci Eng A 521–522:255–258Google Scholar
  189. Martín R, Jiménez LB, Álvaro M, Scaiano JC, Garcia H (2009) Photoinduced formation and characterization of electron-hole pairs in azaxanthylium-derivatized short single-walled carbon nanotubes. Chem Eur J 15(35):8751–8759Google Scholar
  190. Mases M, Noë M, Mercier G, Dossot M, Vigolo B, Mamane V, Fort Y, Soldatov AV, McRae E (2011) Effects on Raman spectra of functionalisation of single walled carbon nanotubes by nitric acid. Phys Status Solidi (B) Basic Res 248(11):2552–2555Google Scholar
  191. Masinga SP, Nxumalo EN, Mamba BB, Mhlanga SD (2013) Microwave-induced synthesis of β-cyclodextrin/N-doped carbon nanotube polyurethane nanocomposites for water purification. Phys Chem EarthGoogle Scholar
  192. Matsuoka M, Tatami J, Wakihara T (2014) Control of dispersion and agglomeration of CNTs for their networking—mechanical and electrical properties of CNT/alumina composites. Ceram Trans 243:117–120Google Scholar
  193. Matthew JK, Virginia AD (2009) Viscoelasticity and shear stability of single-walled carbon nanotube/unsaturated polyester resin dispersions. Macromolecules 42(17):6624–6632Google Scholar
  194. Mehta H, Wangshul H, Kanagaraj S (2011) Studies on mechanical properties of carbon nanotubes/high-density polyethylene nanocomposites by small punch technique. Int J Nanosci 10(1–2):247–251Google Scholar
  195. Mhlanga SD, Masinga SP, Bambo MF, Mamba BB, Nxumalo EN (2013a) A facile procedure to synthesize a three-component β-cyclodextrin polyurethane nanocomposite matrix containing Ag decorated N-CNTs for water treatment. Nanosci Nanotechnol Lett 5(3):341–348Google Scholar
  196. Mhlanga SD, Phao N, Nxumalo EN, Marnba BB (2013b) Synthesis and study of novel nanostructured membranes incorporating N-doped CNTs for water treatment. In: Technical proceedings of the 2013 NSTI nanotechnology conference and expo, NSTI-nanotech 2013, vol 3, pp 665–668Google Scholar
  197. Michael JO’C, Sergei MB, Chad BH, Valerie CM, Michael SS, Erik HH, Kristy LR, Peter JB, William HN, Carter K, Jianpeng M, Robert HH, Bruce RW, Richard ES (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596Google Scholar
  198. Min-Feng Y, Bradley SF, Sivaram A, Rodney SR (2000a) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555Google Scholar
  199. Min-Feng Y, Oleg L, Mark JD, Katerina M, Thomas FK, Rodney SR (2000b) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640Google Scholar
  200. Myounggu P, Hyonny K, Jeffrey PY (2008) Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 19(5):1–10Google Scholar
  201. Myung JL, Cheol-Jin L, Singh VR, Kum-Pyo Y, Nam-Ki M (2010) Humidity sensing characteristics of plasma functionalized multiwall carbon nanotube-polyimide composite films. Proc IEEE Sens 430–433, art no 4716470Google Scholar
  202. Nadagouda MN, Varma RS (2008) Noble metal decoration and alignment of carbon nanotubes in carboxymethyl cellulose. Macromol Rapid Commun 29(2):155–159Google Scholar
  203. Nadia G, Joachim L, Cor EK (2005) Strategies for dispersing carbon nanotubes in highly viscous polymer. J Mater Chem 15:2349–2352Google Scholar
  204. Naeimi H, Mohajeri A, Moradi L, Rashidi AM (2009) Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions. Appl Surf Sci 256(3):631–635Google Scholar
  205. Ng CM, Manickam S (2013) Improved functionalization and recovery of carboxylated carbon nanotubes using the acoustic cavitation approach. Chem Phys Lett 557:97–101Google Scholar
  206. Nie M, Fisher FT (2013) A nano-hybrid shish kebab approach to modifying the interface in carbon nanotube—semicrystalline polymer nanocomposites. In: Proceedings of the 28th annual technical conference of the American society for composites 2013, ASC 2013, vol 2, pp 1804–1814Google Scholar
  207. Nie C, Pan L, Liu Y, Li H, Chen T, Lu T, Sun Z (2012) Electrophoretic deposition of carbon nanotubes-polyacrylic acid composite film electrode for capacitive deionization. Electrochim Acta 66:106–109Google Scholar
  208. Nitayaphat W, Jintakosol T (2014) Removal of silver (I) from aqueous solutions by chitosan/carbon nanotube nanocomposite beads. Adv Mater Res 893:166–169Google Scholar
  209. Nozomi N-R, Sarunya B, Xiaoming S, Kevin W, Hongjie D (2007) Noncovalent functionalization of carbon nanotubes by fluorescein—polyethylene glycol: supramolecular conjugates with ph-dependent absorbance and fluorescence. J Am Chem Soc 129(9):2448–2449Google Scholar
  210. Ntim SA, Sae-Khow O, Witzmann FA, Mitra S (2011) Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J Colloid Interface Sci 355(2):383–388Google Scholar
  211. Nxumalo EN, Msomi PF, Mhlanga SD, Mamba BB (2013) Production of N-doped carbon nanotubes using α- and β-cyclodextrins: the effect of solubility. Mater Lett 100:66–69Google Scholar
  212. Ogasawara T, Ishida Y, Ishikawa T, Yokota R (2004) Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos A Appl Sci Manuf 35(1):67–74Google Scholar
  213. Ortengren U (2000) On composite resin materials. Degradation, erosion and possible adverse effects in dentists. Swed Dent J Suppl 141:1–61Google Scholar
  214. Panamoottil SM, Pötschke P, Lin RJT, Bhattacharyya D, Fakirov S (2013) Conductivity of microfibrillar polymer-polymer composites with CNT-loaded microfibrils or compatibilizer: a comparative study. Express Polym Lett 7(7):607–620Google Scholar
  215. Pang J, Xu G, Bai Y, Yuan S, He F, Wang Y, Sun H, Hao A (2010) Molecular dynamics simulations of the interactions between β-cyclodextrin derivatives and single-walled carbon nanotubes. Comput Mater Sci 50(2):283–290Google Scholar
  216. Pang H, Bao Y, Yang S-G, Chen C, Zhang W-Q, Chen J, Ji X, Lei J (2014) Preparation and properties of carbon nanotube/binary-polymer composites with a double-segregated structure. J Appl Polym Sci 131(2), art no 39789Google Scholar
  217. Parodi B, Londonio A, Polla G, Savio M, Smichowski P (2014) On-line flow injection solid phase extraction using oxidised carbon nanotubes as the substrate for cold vapour-atomic absorption determination of Hg(ii) in different kinds of water. J Anal At Spectrom 29(5):880–885Google Scholar
  218. Parveen S, Husain S, Kumar A, Ali J, Husain M, Harsh M, Husain M (2013) Enhanced field emission properties of carbon nanotube based field emitters by dynamic oxidation. Curr Nanosci 9(5):619–623Google Scholar
  219. Parvinzadeh Gashti M, Almasian A (2013) UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Compos B Eng 45(1):282–289Google Scholar
  220. Pascual J, Peris F, Boronat T, Fenollar O, Balart R (2012) Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene. Polym Eng Sci 52(4):733–740Google Scholar
  221. Paul P, Amit KK, Ellen MA, Anthony MW, Bong SS, Jiadi X, Himabindu N, Benjamin GP, Joerg L, Ayyalusamy R, Nicholas AK (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83Google Scholar
  222. Pei L, Abbott J, Zufelt K, Davis A, Zappe M, Decker K, Liddiard S, Vanfleet R, Linford MR, Davis R (2011) Processing of thin carbon nanotube-polyimide composite membranes. Nanosci Nanotechnol Lett 3(4):451–457Google Scholar
  223. Peng CM, Ben ZT, Jang-Kyo K (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11):1497–1505Google Scholar
  224. Peng R, Wang Y, Tang W, Yang Y, Xie X (2013) Progress in imidazolium ionic liquids assisted fabrication of carbon nanotube and graphene polymer composites. Polymers 5(2):847–872Google Scholar
  225. Perez LD, Zuluaga MA, Kyu T, Mark JE, Lopez BL (2009) Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites. Polym Eng Sci 49(5):866–874Google Scholar
  226. Peter KHH, Richard HF (2002) π-electronic and electrical transport properties of conjugated polymer nanocomposites: poly(p-phenylenevinylene) with homogeneously dispersed silica nanoparticles. J Chem Phys 116:6782–6790Google Scholar
  227. Petra P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255Google Scholar
  228. Philip GC, Keith B, Masa I, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804Google Scholar
  229. Pickering SJ, Kelly RM, Kennerley JR, Rudd CD, Fenwick NJ (2000) A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Compos Sci Technol 60(4):509–523Google Scholar
  230. Pierard N, Fonseca A, Konya Z, Willems I, Van Tendeluo G, Nagy JB (2001) Production of short carbon nanotubes with open tips of ball milling. Chem Phys Lett 335:1–8Google Scholar
  231. Pöllänen M, Pirinen S, Suvanto M, Pakkanen TT (2011) Influence of carbon nanotube-polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene. Compos Sci Technol 71(10):1353–1360Google Scholar
  232. Popuri SR, Frederick R, Chang C-Y, Fang S-S, Wang C-C, Lee L-C (2014) Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin Water Treat 52(4–6):691–701Google Scholar
  233. Pötschke P, Villmow T, Pegel S, John A, Rentenberger R (2011) Melt mixed polymer-MWCNT composites for liquid sensing applications. Mater Res Soc Symp Proc 1410:31–42Google Scholar
  234. PourAkbar Saffar K, JamilPour N, Rouhi G, Raeisi Najafi A, Arshi AR, Sudak L (2009) Fracture toughness of carbon nanotube reinforced artificial bone tissue. In: Proceedings of the 12th international conference on fracture 2009, ICF-12, vol 8, pp 5895–5902Google Scholar
  235. Prajapati VK, Awasthi K, Gautam S, Yadav TP, Rai M, Srivastava ON, Sundar S (2011) Targeted killing of leishmania donovani in vivo and in vitro with amphotericin β attached to functionalized carbon nanotubes. J Antimicrob Chemother 66(4):874–879, art no dkr002Google Scholar
  236. Primo EN, Gutierrez FA, Luque GL, Dalmasso PR, Gasnier A, Jalit Y, Moreno M, Bracamonte MV, Rubio ME, Pedano ML, Rodríguez MC, Ferreyra NF, Rubianes MD, Bollo S, Rivas GA (2013) Comparative study of the electrochemical behavior and analytical applications of (bio)sensing platforms based on the use of multi-walled carbon nanotubes dispersed in different polymers. Anal Chim Acta 805:19–35Google Scholar
  237. Prolongo SG, Del Rosario G, Ureña A (2013) Coupled thermal-electrical analysis of carbon nanotube/epoxy composites. Polym Eng SciGoogle Scholar
  238. Qi H, Liu J, Gao S, Mäder E (2013a) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline-urea solution. J Mater Chem A 1(6):2161–2168Google Scholar
  239. Qi H, Mäder E, Liu J (2013b) Unique water sensors based on carbon nanotube-cellulose composites. Sens Actuators B: Chem 185:225–230Google Scholar
  240. Qi H, Mäder E, Liu J (2013c) Electrically conductive aerogels composed of cellulose and carbon nanotubes. J Mater Chem A 1(34):9714–9720Google Scholar
  241. Qiao YJ, Cao M, Zhang L (2006) Investigation on potential microwave absorbability of polyester-composites filled with carbon nanotubes. In: Proceedings of 1st IEEE international conference on nano micro engineered and molecular systems, IEEE-NEMS, art no 4135190, pp 1331–1334Google Scholar
  242. Raja M, Shanmugharaj AM, Ryu SH, Subha J (2011) Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators. Mater Chem Phys 129(3):925–931Google Scholar
  243. Raja M, Ryu SH, Shanmugharaj AM (2013a) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly(lactic acid) (PLA)/CNT nanocomposites. Eur Polym J 49(11):3492–3500Google Scholar
  244. Raja M, Ryu SH, Shanmugharaj AM (2013b) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly(lactic acid) (PLA)/CNT nanocomposites. Eur Polym J 49(11):3492–3500Google Scholar
  245. Raja M, Ryu SH, Shanmugharaj AM (2014) Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites. Colloids Surf A 450(1):59–66Google Scholar
  246. Rajdip B, Einat N-R, Oren R, Rachel Y-R (2002) Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2(1):25–28Google Scholar
  247. Rajendran Royan NR, Sulong AB, Sahari J, Suherman H (2013) Effect of acid- and ultraviolet/ozonolysis-treated MWCNTs on the electrical and mechanical properties of epoxy nanocomposites as bipolar plate applications. J Nanomater, art no 717459Google Scholar
  248. Ramôa SD, Barra GM, Oliveira RV, De Oliveira MG, Cossa M, Soares BG (2013) Electrical, rheological and electromagnetic interference shielding properties of thermoplastic polyurethane/carbon nanotube composites. Polym Int 62(10):1477–1484Google Scholar
  249. Rath D, Chahataray R, Nayak PL (2013) Synthesis and characterization of conducting polymers multi walled carbon nanotube-chitosan composites coupled with poly(metachloroaniline). Middle East J Sci Res 18(5):635–641Google Scholar
  250. Reddy CC, Ramu TS (2008) Polymer nanocomposites as insulation for HV DC cables—investigations on the thermal breakdown. IEEE Trans Dielectr Electr Insul 15(1):221–229Google Scholar
  251. Ribeiro R, Banda S, Ounaies Z, Ucisik H, Usta M, Liang H (2012a) A tribological and biomimetic study of PI-CNT composites for cartilage replacement. J Mater Sci 47(2):649–658Google Scholar
  252. Ribeiro R, Banda S, Ounaies Z, Ucisik H, Usta M, Liang H (2012b) A tribological and biomimetic study of PI-CNT composites for cartilage replacement. J Mater Sci 47(2):649–658Google Scholar
  253. Richard A AV, Giannelis Emmanuel P (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26(5):394–401Google Scholar
  254. Rodney A, David J, Dali Q, Terry R (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017Google Scholar
  255. Rohan AH, Darrin JP (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32(04):354–358Google Scholar
  256. Roy D, Bhattacharyya S, Rachamim A, Plati A, Saboungi M-L (2010) Measurement of interfacial shear strength in single wall carbon nanotubes reinforced composite using Raman spectroscopy. J Appl Phys 107(4), art no 043501Google Scholar
  257. Roy S, Das T, Ming Y, Chen X, Yue CY, Hu X (2014) Specific functionalization and polymer grafting on multiwalled carbon nanotubes to fabricate advanced nylon 12 composites. J Mater Chem A 2(11):3961–3970Google Scholar
  258. Russ M, Rahatekar SS, Koziol K, Farmer B, Peng H-X (2013) Length-dependent electrical and thermal properties of carbon nanotube-loaded epoxy nanocomposites. Compos Sci Technol 81:42–47Google Scholar
  259. Safdari M, Al-Haik MS (2013) Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Carbon 64:111–121Google Scholar
  260. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46(3):281–283Google Scholar
  261. Saidi WA (2013) Functionalization of single-wall zigzag carbon nanotubes by carboxyl groups: clustering effect. J Phys Chem C 117(19):9864–9871Google Scholar
  262. Salehi E, Madaeni SS, Rajabi L, Vatanpour V, Derakhshan AA, Zinadini S, Ghorabi S, Ahmadi Monfared H (2012) Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309–319Google Scholar
  263. Sanip SM, Ismail AF, Aziz M, Soga T (2009) Functionalized carbon nanotubes for mixed matrix membrane. IEICE Trans Electron E92-C(12):1427–1431Google Scholar
  264. Sato Y, Yokoyama A, Nodasaka Y, Kohgo T, Motomiya K, Matsumoto H, Nakazawa E, Numata T, Zhang M, Yudasaka M, Hara H, Araki R, Tsukamoto O, Saito H, Kamino T, Watari F, Tohji K (2013) Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Sci Rep 3, art no 2516Google Scholar
  265. Savas B, Young-Kyun K, David T (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4620Google Scholar
  266. Schlea MR, Meree CE, Gerhardt RA, Mintz EA, Shofner ML (2012) Network behavior of thermosetting polyimide/multiwalled carbon nanotube composites. Polymer 53(4):1020–1027Google Scholar
  267. Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 72(5):573–580Google Scholar
  268. Sedláková Z, Clarizia G, Bernardo P, Jansen JC, Slobodian P, Svoboda P, Kárászová M, Friess K, Izak P (2014a) Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes 4(1):20–39Google Scholar
  269. Sedláková Z, Clarizia G, Bernardo P, Jansen JC, Slobodian P, Svoboda P, Kárászová M, Friess K, Izak P (2014b) Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes 4(1):20–39Google Scholar
  270. Sementsov YI, Prikhod’Ko GP, Melezhik AV, Aleksyeyeva TA, Kartel MT (2010) Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. Nanomater Supramol Struct Phys Chem Appl 347–368Google Scholar
  271. Serrano MC, Gutiérrez MC, del Monte F (2014) Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progr Polym SciGoogle Scholar
  272. Seung JP, Min SC, Sung TL, Hyoung JC, Myung SJ (2003) Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24(18):1070–1073Google Scholar
  273. Sevilla M, Yu L, Zhao L, Ania CO, Titiricic M-M (2014) Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustain Chem Eng 2(4):1049–1055Google Scholar
  274. Seyhana AT, Florian HG, Metin T, Karl S (2007a) Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites. Eur Polym J 43(2):374–379Google Scholar
  275. Seyhana AT, Gojnyb FH, Metin T, Karl S (2007b) Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites. Eur Polym J 43(2):374–379Google Scholar
  276. Seyhana AT, Gojnyb FH, Tanoğlua T, Schulteb K (2007c) Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. Eur Polym J 43(7):2836–2847Google Scholar
  277. Seyhana AT, Metin T, Karl S (2009) Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater Sci Eng A 523(1–2):85–92Google Scholar
  278. Shawky HA, El-Aassar AHM, Abo-Zeid DE (2012) Chitosan/carbon nanotube composite beads: preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt. J Appl Polym Sci 125(SUPPL. 1):E93–E101Google Scholar
  279. Shi L, Li G, Sui G, Yang X (2009) Preparation and mechanical properties of epoxy resin reinforced with Jeffamines-grafted carbon nanotubes. Adv Mater Res 79–82:553–556Google Scholar
  280. Shi Y-Y, Zhang W-B, Yang J-H, Huang T, Zhang N, Wang Y, Yuan G-P, Zhang C-L (2013) Super toughening of the poly(L-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Adv 3(48):26271–26282Google Scholar
  281. Shigeo M, Ryosuke K, Yuhei M, Shohei C, Masamichi K (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234Google Scholar
  282. Shigeta M, Komatsu M, Nakashima N (2006) Individual solubilization of carbon nanotubes using polyimides. Polym Preprints Jpn 55(1):1591–1593Google Scholar
  283. Shin SR, Park SJ, Yoon SG, Lee CK, Shin KM, Gu BK, Shin MK, Kim MS, Kim YJ, Kim SJ (2006) Anomalous pH actuation of a chitosan/SWNT microfiber hydrogel with improved mechanical property. Mater Res Soc Symp Proc 915:11–16Google Scholar
  284. Singh RP, Das M, Thakare V, Jain S (2012) Functionalization density dependent toxicity of oxidized multiwalled carbon nanotubes in a murine macrophage cell line. Chem Res Toxicol 25(10):2127–2137Google Scholar
  285. Singha AS, Thakur VK (2008a) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791Google Scholar
  286. Singha AS, Thakur VK (2008b) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873Google Scholar
  287. Singha AS, Thakur VK (2008c) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. E-J Chem 5:1055–1062Google Scholar
  288. Singha AS, Thakur VK (2008d) Synthesis and characterization of grewia optiva fiber-reinforced PF-based composites. Int J Polym Mater 57:1059–1074Google Scholar
  289. Singha AS, Thakur VK (2009a) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58Google Scholar
  290. Singha AS, Thakur VK (2009b) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76Google Scholar
  291. Singha AS, Thakur VK (2009c) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58:217–228Google Scholar
  292. Singha AS, Thakur VK (2009d) Synthesis, characterization and analysis of Hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194Google Scholar
  293. Singha AS, Thakur VK (2009e) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48:482–487Google Scholar
  294. Singha AS, Thakur VK, Mehta IK et al (2009a) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711Google Scholar
  295. Singha AS, Thakur VK, Mishra BN (2009b) Study of grewia optiva fiber reinforced urea-formaldehyde composites. J Polym Mater 26:81–90Google Scholar
  296. Song D, Liu Y, Leng J (2010) EMI shielding performance study of tri-layer nano stealth composites. In: Proceedings of SPIE—the international society for optical engineering, vol 7644, art no 764423Google Scholar
  297. Song X-J, Yang F, Wang X, Xuan H (2012) Preparation of β-cyclodextrin-modified multi-walled CNTs and its application in capturing β-naphthol from wastewater. Micro Nano Lett 7(9):892–895Google Scholar
  298. Song BJ, Ahn JW, Cho KK, Roh JS, Lee DY, Yang YS, Lee JB, Hwang DY, Kim HS (2013) Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites. J Nanosci Nanotechnol 13(11):7723–7727Google Scholar
  299. Speltini A, Merli D, Dondi D, Milanese C, Galinetto P, Bozzetti C, Profumo A (2013) Radiation-induced grafting of carbon nanotubes on HPLC silica microspheres: theoretical and practical aspects. Analyst 138(13):3778–3785Google Scholar
  300. Spinks GM, Shin SR, Wallace GG, Whitten PG, Kim SI, Kim SJ (2006) Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sens Actuators B: Chem 115(2):678–684Google Scholar
  301. Sterzyński T, Tomaszewska J, Piszczek K, Skórczewska K (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70(6):966–969Google Scholar
  302. Stig H, Carlos Lo´ pez-C, Jens S, Poul LH, Bjerne SC, Jens RR-N, Frank A-P, Jens KN (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:1–10Google Scholar
  303. Suemori K, Hoshino S, Kamata T (2013) Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate. Appl Phys Lett 103(15), art no 153902Google Scholar
  304. Sulong AB, Park J (2011) Alignment of multi-walled carbon nanotubes in a polyethylene matrix by extrusion shear flow: mechanical properties enhancement. J Compos Mater 45(8):931–941Google Scholar
  305. Sulong AB, Park J, Azhari CH, Jusoff K (2011) Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Compos B Eng 42(1):11–17Google Scholar
  306. Sulong AB, Ramli MI, Hau SL, Sahari J, Muhamad N, Suherman H (2013) Rheological and mechanical properties of carbon nanotube/Graphite/SS316L/ polypropylene nanocomposite for a conductive polymer composite. Compos B Eng 50:54–61Google Scholar
  307. Sun KJ, Wincheski RA, Park C (2008) Magnetic property measurements on single wall carbon nanotube polyimide composites. J Appl Phys 103(2), art no 023908Google Scholar
  308. Takahashi K, Shizume R, Uchida K, Yajima H (2009) Improved blood biocompatibility of composite film of chitosan/carbon nanotubes complex. J Biorheol 23(1):64–71Google Scholar
  309. Tan A, Yildirimer L, Rajadas J, De La Peña H, Pastorin G, Seifalian A (2011) Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomedicine 6(6):1101–1114Google Scholar
  310. Tanaka T, Sano E, Imai M, Akiyama K (2013) Low-frequency noise in carbon-nanotube/cellulose composite paper. Jpn J Appl Phys 49(5 Part 1):0551011–0551013Google Scholar
  311. Tang ZK, Lingyun Z, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Ping S (2001) Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292(5526):2462–2465Google Scholar
  312. Tang Q-Y, Chan Y-C, Wong N-B, Cheungc R (2010a) Surfactant-assisted processing of polyimide/multiwall carbon nanotube nanocomposites formicroelectronics applications. Polym Int 59(9):1240–1245Google Scholar
  313. Tang Q-Y, Chen J, Chan YC, Chung CY (2010b) Effect of carbon nanotubes and their dispersion on thermal curing of polyimide precursors. Polym Degrad Stab 95(9):1672–1678Google Scholar
  314. Tang L-C, Wang X, Gong L-X, Peng K, Zhao L, Chen Q, Wu L-B, Jiang J-X, Lai G-Q (2014) Creep and recovery of polystyrene composites filled with graphene additives. Compos Sci Technol 91:63–70Google Scholar
  315. Tarawneh MA, Ahmad SH (2012) Improved mechanical properties of thermoplastic natural rubber (TPNR) composite using a hybrid SiC-CNTs nano-filler. In: Proceedings of the 8th Asian-Australasian conference on composite materials 2012, ACCM 2012—composites: enabling tomorrow’s industry today, vol 2, pp 1279–1284Google Scholar
  316. Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W (2014) Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 15(1):327–338Google Scholar
  317. Thuau D, Koutsos V, Cheung R (2009) Electrical and mechanical properties of carbon nanotube-polyimide composites. J Vac Sci Technol B: Microelectron Nanometer Struct 27(6):3139–3144Google Scholar
  318. Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117Google Scholar
  319. Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15Google Scholar
  320. Thakur VK, Thakur MK (2014c) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652Google Scholar
  321. Thakur VK, Singha AS, Kaur I et al (2010a) Silane functionalization of Saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414Google Scholar
  322. Thakur VK, Singha AS, Mehta IK (2010b) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):137–146Google Scholar
  323. Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969Google Scholar
  324. Thakur VK, Vennerberg D, Kessler MR (2014a) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356Google Scholar
  325. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092Google Scholar
  326. Thakur VK, Thakur MK, Gupta RK (2014c) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271Google Scholar
  327. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014d) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684Google Scholar
  328. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014e) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249Google Scholar
  329. Thakur VK, Grewell D, Thunga M, Kessler MR (2014f) Novel composites from eco-friendly soy flour/sbs triblock copolymer. Macromol Mater Eng 299:953–958Google Scholar
  330. Tijing LD, Park C-H, Kang S-J, Amarjargal A, Kim T-H, Pant HR, Kim HJ, Lee DH, Kim CS (2013) Improved mechanical properties of solution-cast silicone film reinforced with electrospun polyurethane nanofiber containing carbon nanotubes. Appl Surf Sci 264:453–458Google Scholar
  331. Torresa A, Marcoa ID, Caballeroa BM, Laresgoitia MF, Legarretaa JA, Cabreroa MA, Gonzáleza A, Chomóna MJ, Gondrab K (2000) Recycling by pyrolysis of thermoset composites: characteristics of the liquid and gaseous fuels obtained. Fuel 79(8):897–902Google Scholar
  332. Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680Google Scholar
  333. Tsai J-L, Tzeng S-H, Chiu Y-T (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos B Eng 41(1):106–115Google Scholar
  334. Tzeng S-H, Tsai J-L, Chiu Y-T (2008) Characterizing the elastic properties of carbon nanotubes/polyimide nanocomposites. In: Progress of composites 2008 in Asia and Australasia—proceedings of the 6th Asian-Australasian conference on composite materials, ACCM 2008, pp 80–83Google Scholar
  335. Vanyorek L, Meszaros R, Barany S (2014) Surface and electrosurface characterization of surface-oxidized multi-walled N-doped carbon nanotubes. Colloids Surf A 448(1):140–146Google Scholar
  336. Verge P, Peeterbroeck S, Bonnaud L, Dubois P (2010) Investigation on the dispersion of carbon nanotubes in nitrile butadiene rubber: role of polymer-to-filler grafting reaction. Compos Sci Technol 70(10):1453–1459Google Scholar
  337. Vicente A, Ortiz AJ, Bravo LA (2009) Microleakage beneath brackets bonded with flowable materials: effect of thermocycling. Eur J Orthod 31(4):390–396Google Scholar
  338. Vijay KT, Amar SS, Bhupendra NM (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122(1):532–554Google Scholar
  339. Vladimir AS, Muhammed KG, Alexander AY, Anna AR, Kai S, Arif AM, James PW, Nicholas AK (2005) Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc 127(10):3463–3472Google Scholar
  340. Wang Z, Yu X, Pan B, Xing B (2010) Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ Sci Technol 44(3):978–984Google Scholar
  341. Wang J, Li L, Wong CL, Madhavi S (2012) Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology 23(49), art no 495401Google Scholar
  342. Wang H, Chang L, Yang X, Yuan L, Ye L, Zhu Y, Harris AT, Minett AI, Trimby P, Friedrich K (2014a) Anisotropy in tribological performances of long aligned carbon nanotubes/polymer composites. Carbon 67:38–47Google Scholar
  343. Wang J, Jiao Q, Li H, Zhao Y, Guo B (2014b) In situ preparation of polyimide/amino-functionalized carbon nanotube composites and their properties. Polym ComposGoogle Scholar
  344. Wang P-C, Liao Y-C, Liu L-H, Lai Y-L, Lin Y-C, Hsu Y-J (2014c) Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine. Appl Surf SciGoogle Scholar
  345. Wei W, Sébastien W, Giorgia P, Monica B, Cédric K, Jean-Paul B, Renato G, Maurizio P, Alberto B (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44(39):6358–6362Google Scholar
  346. Wenzhong T, Michael HS, Suresh GA (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41(14):2779–2785Google Scholar
  347. Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Gurtowska N, Olkowska J, Kloskowski T, Drewa TA, Kiełkowska U, Druzyński S (2014) Nanotube-mediated efficiency of cisplatin anticancer therapy. Carbon 70:46–58Google Scholar
  348. Wim T, Richard PW (2004) Butyrated kraft lignin as compatibilizing agent for natural fiber reinforced thermoset composites. Compos A Appl Sci Manuf 35(3):327–338Google Scholar
  349. Won K, Kim Y-H, An S, Lee HJ, Park S, Choi Y-K, Kim JH, Hwang H-I, Kim HJ, Kim H, Lee SH (2013) Glucose oxidase/cellulose-carbon nanotube composite paper as a biocompatible bioelectrode for biofuel cells. Appl Biochem Biotechnol 171(5):1194–1202Google Scholar
  350. Wu T, Yan J (2013) Porous CNTs/chitosan composite with lamellar structure prepared by ice-templating. In: Proceedings of SPIE—the international society for optical engineering, vol 8923, art no 89233AGoogle Scholar
  351. Wu Z, Wang H, Zheng K, Xue M, Cui P, Tian X (2012) Incorporating strong polarity minerals of tourmaline with carbon nanotubes to improve the electrical and electromagnetic interference shielding properties. J Phys Chem C 116(23):12814–12818Google Scholar
  352. Wu H, Wang K, Meng Y, Lu K, Wei Z (2013a) An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries. J Mater Chem A 1(21):6366–6372Google Scholar
  353. Wu W, Jiang W, Zhang W, Lin D, Yang K (2013b) Influence of functional groups on desorption of organic compounds from carbon nanotubes into water: insight into desorption hysteresis. Environ Sci Technol 47(15):8373–8382Google Scholar
  354. Wu Z, Wang H, Tian X, Ding X, Xue M, Zhou H, Zheng K (2013c) Mechanical and flame-retardant properties of styrene-ethylene-butylene-styrene/carbon nanotube composites containing bisphenol A bis(diphenyl phosphate). Compos Sci Technol 82:8–14Google Scholar
  355. Xiaofeng L, Wanjin Z, Ce W, Ten-Chin W, Yen W (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36(5):671–712Google Scholar
  356. Xiao-Lin X, Qing-Xi L, Robert K-YL, Xing-Ping Z, Qing-Xin Z, Zhong-Zhen Y, Yiu-Wing M (2004) Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer 45:6665–6673Google Scholar
  357. Xiaowen J, Yuezhen B, Masaru M (2006) Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 46(18):7418–7424Google Scholar
  358. Xie F, Liang H, Ren XJ, Yifa C (2013) Isothermal crystallization of PET/PTT-CNTs composites. Adv Mater Res 750–752:191–194Google Scholar
  359. Xu H, Zhang X, Zhan J (2010) Determination of pentachiorophenol at carbon nanotubes modified electrode incorporated with β-cyclodextrin. J Nanosci Nanotechnol 10(11):7654–7657Google Scholar
  360. Xu Y, Chen L, Wang X (2013) Synthesis of modified carbon nanotube-supported Pd and the catalytic performance for hydrodehalogenation of aryl halides. Can J Chem 91(5):307–314Google Scholar
  361. Yan D, Xu L, Chen C, Tang J, Ji X, Li Z (2012) Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polym Int 61(7):1107–1114Google Scholar
  362. Yan W, Yan L, Duan J, Jing C (2014) Sorption of organophosphate esters by carbon nanotubes. J Hazard Mater 273:53–60Google Scholar
  363. Yang Z, Chen X, Pu Y, Zhou L, Chen C, Li W, Xu L, Yi B, Wang Y (2007) Facile approach to obtain individual-nanotube dispersion at high loading in carbon nanotubes/polyimide composites. Polym Adv Technol 18(6):458–462Google Scholar
  364. Yang J-J, Fang H-G, Zhang Y-Q, Shi W-T, Chen P, Wang Z-G (2013) Studies on influences of viscoelastic properties on melt extrusion of carbon nanotubes-filled isotactic polypropylene composites. Acta Polym Sin 10:1325–1333Google Scholar
  365. Yang S, Han C, Wang X, Nagatsu M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52Google Scholar
  366. Yazdani-Pedram M, Menzel C, Toro P, Quijada R, May-Pat A, Avilés F (2013) Mechanical and thermal properties of multiwalled carbon nanotube/polypropylene composites using itaconic acid as compatibilizer and coupling agent. Macromol Res 21(2):153–160Google Scholar
  367. Ye S, Zhang H, Wang Y, Jiao F, Lin C, Zhang Q (2011) Carboxylated single-walled carbon nanotubes induce an inflammatory response in human primary monocytes through oxidative stress and NF-jB activation. J Nanopart Res 13(9):4239–4252Google Scholar
  368. Yesil S, Bayram G (2011) Effect of carbon nanotube purification on the electrical and mechanical properties of poly(ethylene terephthalate) composites with carbon nanotubes in low concentration. J Appl Polym Sci 119(6):3360–3371Google Scholar
  369. Yi C, Qi S, Zhang D, Yang M (2010) Covalent conjugation of multi-walled carbon nanotubes with proteins. Methods Mol Biol (Clifton, NJ) 625:9–17Google Scholar
  370. Yin G, Zheng Z, Wang H, Du Q, Zhang H (2014) Strings of polymer microspheres stabilized by oxidized carbon nanotubes. J Colloid Interface Sci 426:137–144Google Scholar
  371. Yu G, Li X (2012) Fabrication and bio-tribological properties of medical polyurethane/carbon nanotubes composites. Energy Educ Sci Technol Part A: Energy Sci Res 30(1):475–480Google Scholar
  372. Yu J, Tonpheng B, Gröbner G, Andersson O (2011) Microstructural and property changes in high pressure treated carbon nanotube/polybutadiene composites. J Mater Chem 21(35):13672–13682Google Scholar
  373. Yu J, Tonpheng B, Gröbner G, Andersson O (2012) A MWCNT/polyisoprene composite reinforced by an effective load transfer reflected in the extent of polymer coating. Macromolecules 45(6):2841–2849Google Scholar
  374. Yu J, Yao M, Gröbner G, Sundqvist B, Tonpheng B, Liu B, Andersson O (2013a) Buckminsterfullerene: a strong, covalently bonded, reinforcing filler and reversible cross-linker in the form of clusters in a polymer. ACS Macro Lett 2(6):511–517Google Scholar
  375. Yu X, Lv Z, Tong Y, Yang R (2013b) The effect of inorganic particles on microphase separation of polyether polyurethanes. Polym Mater Sci Eng 29(7):101–105Google Scholar
  376. Yu J-G, Zhao X-H, Yang H, Chen X-H, Yang Q, Yu L-Y, Jiang J-H, Chen X-Q (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483(1):241–251Google Scholar
  377. Yuan-Qing L, Shao-Yun F, Yang Y, Yiu-Wing M (2008) Facile synthesis of highly transparent polymer nanocomposites by introduction of core-shell structured nanoparticles. Chem Mater 20(8):2637–2643Google Scholar
  378. Yue D, Liu Y, Shen Z, Zhang L (2006) Study on preparation and properties of carbon nanotubes/rubber composites. J Mater Sci 41(8):2541–2544Google Scholar
  379. Yulong D, Hajar A, Dongsheng W, Richard AW (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(2):240–250Google Scholar
  380. Zaminpayma E (2014) Molecular dynamics simulation of mechanical properties and interaction energy of polythiophene/polyethylene/poly(p-phenylenevinylene) and CNTs composites. Polym ComposGoogle Scholar
  381. Zdenko S, Dimitrios T, Konstantinos P, Costas G (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401Google Scholar
  382. Zeng Y, Liu P-F, Zhao L, Du J-H, Liu C (2013) High electrical sensitivity of polyurethane carbon nanotube composites to tensile strain. New Carbon Mater 28(2):88–93Google Scholar
  383. Zha J-W, Sun F, Dang Z-M (2013) Fabrication and properties of high performance polyimide nanofibrous films by electrospinning. In: Proceedings of IEEE international conference on solid dielectrics, ICSD, art no 6619776, pp 923–926Google Scholar
  384. Zhang JG (2011) The effect of carbon fibers and carbon nanotubes on the mechanical properties of polyimide composites. Mech Compos Mater 47(4):447–450Google Scholar
  385. Zhang Y, Huang Y, Liu C, Ge Y (2011) Research of carbon nanotubes/silicon rubber pressure-sensitive composites for artificial skin, Huazhong Keji Daxue Xuebao (Ziran Kexue Ban). J Huazhong Univ Sci Technol (Nat Sci Edn) 39(SUPPL. 2):306–315Google Scholar
  386. Zhang M, Dai W, Yan M, Ge S, Yu J, Song X, Xu W (2012) Ultrasensitive electrochemiluminescence immunosensor using PtAg@carbon nanocrystals composites as labels and carbon nanotubes-chitosan/gold nanoparticles as enhancer. Analyst 137(9):2112–2118Google Scholar
  387. Zhang B, Chakoli AN, Zang W, Tian Y, Zhang K, Chen C, Li Y (2014) A comparative study on effect of aromatic polyimide chain conformation on reinforcement of carbon nanotube/polyimide nanocomposites. J Appl Polym Sci 131(13), art no 40479Google Scholar
  388. Zhao H, Li H, Yu H, Chang H, Quan X, Chen S (2013) CNTs-TiO2/Al2O3 composite membrane with a photocatalytic function: fabrication and energetic performance in water treatment. Sep Purif Technol 116:360–365Google Scholar
  389. Zhaoxia J, Pramodab KP, Guoqin X, Suat HG (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem Phys Lett 337(1):43–47Google Scholar
  390. Zheng W, Chen YQ, Zheng YF (2008) Adsorption and electrochemistry of hemoglobin on Chi-carbon nanotubes composite film. Appl Surf Sci 255(2):571–573Google Scholar
  391. Zheng Z, Wang Z, Feng Q, Zhang F, Du Y, Wang C (2013) Preparation of surface-silvered graphene-CNTs/polyimide hybrid films: processing, morphology and properties. Mater Chem Phys 138(1):350–357Google Scholar
  392. Zheng-Ming H, Zhang Y-Z, Kotakic M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253Google Scholar
  393. Zhong J, Xie T, Deng J, Sun X, Pan X, Bao X, Wu Z (2011) Direct observation and spectroscopy of nanoscaled carboxylated carbonaceous fragments coated on carbon nanotubes. Chem Commun 47(29):8373–8375Google Scholar
  394. Zhong J, Isayev AI, Huang K (2014) Influence of ultrasonic treatment in PP/CNT composites using masterbatch dilution method. Polymer (UK) 55(7):1745–1755Google Scholar
  395. Zhou J, Bai H-P, Li F-S, Cui P, Chen L-Y, Jiang W (2005) Preparation of carbon nanotubes/HTPB and research of catalytic performance. J Solid Rocket Technol 28(3):195–197Google Scholar
  396. Zhou Z, Xu Y, Hojamberdiev M, Liu W, Wang J (2010) Enhanced cycling performance of silicon/disordered carbon/carbon nanotubes composite for lithium ion batteries. J Alloy Compd 507(1):309–311Google Scholar
  397. Zhou K, Gu S-Y, Zhang Y-H, Ren J (2012) Effect of dispersion on rheological and mechanical properties of polypropylene/carbon nanotubes nanocomposites. Polym Eng Sci 52(7):1485–1494Google Scholar
  398. Zhu Y, Ang TP, Keith C, John AM, Narayan SH, Masao T (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127(27):9875–9880Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Nurhidayatullaili Muhd Julkapli
    • 1
  • Samira Bagheri
    • 1
  • S. M. Sapuan
    • 2
    Email author
  1. 1.Nanotechnology & Catalysis Research Centre (NANOCAT), IPS BuildingUniversity MalayaKuala LumpurMalaysia
  2. 2.Department of Mechanical and Manufacturing EngineeringUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations