Skip to main content

Nanocomposites of Polyhydroxyalkanoates Reinforced with Carbon Nanotubes: Chemical and Biological Properties

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

The polyhydroxyalkanoates (PHA) is one of the most investigated polymers in the development of eco-friendly nanocomposites. Biotechnology is used for their production and the mechanisms of their biodegradation make them very interesting polymers to replace conventional polymers in applications where the biodegradability is a desirable characteristic. PHA applications include medical field (suture fasteners, staples, screws, valves, orthopedic pins, etc.) besides agriculture and packaging sectors. The introduction of nanofillers in the polyhydroxyalkanoates matrixes is one of the ways used in an attempt to improve their properties or to reach new properties. With this goal, PHA/carbon nanotubes (CNT) nanocomposites have been quite studied. The remarkable properties shown by carbon nanotubes such as high Young’s modulus, high thermal stability and electrical conductivity, and their low chemical reactivity is the key to achieve excellent properties from PHA nanocomposites, and to maintaining the matrix biodegradability. CNT cause changes in PHA characteristics that can affect the biodegradation rate as crystallinity degree, porosity, surface roughness, and hydrophilicity of polymer matrix. Many researches have shown the effects and advances caused by CNT filler in the mechanical resistance, crystallinity degree, thermal properties, and other important characteristics of PHA nanocomposites. However, these works have disregarded the study of the biodegradation of PHA/CNT nanocomposites, what is essential to define the application field of final product.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Doi Y (1999) Structural effects on enzymatic degradabilities for poly [(R)-3-hydroxybutyric acid] and its copolymers. Int J Biol Macromol 25:185–192

    CAS  Google Scholar 

  • Abe H, Kikkawa Y, Iwata T, Aoki H, Akehata T, Doi Y (2000) Microscopic visualization on crystalline morphologies of thin films for poly [(R)-3-hydroxybutyric acid] and its copolymer. Polymer 41:867–874

    CAS  Google Scholar 

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    CAS  Google Scholar 

  • Akmal D, Azizan MN, Majid MIA (2003) Biodegradation of microbial polyesters P(3HB) and P(3HB–co–3HV) under the tropical climate environment. Polym Degrad Stab 80:513–518

    CAS  Google Scholar 

  • Anandhan S, Bandyopadhyay S (2011) Polymer nanocomposites: from synthesis to applications. In: Nanocomposites and polymers with analytical methods, pp 3–28

    Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  • Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly [(R)-3-hydroxybutyrate], poly [e-caprolactone], and poly [(S)-lactide]. Polym Degrad Stab 76:53–59

    CAS  Google Scholar 

  • Arras MML, Schillai C, Keller TF, Schulze R, Jandt KD (2013) Alignment of multi-wall carbon nanotubes by disentanglement in ultra-thin melt-drawn polymer films. Carbon 60:366–378

    CAS  Google Scholar 

  • Avella M, Errico ME, Rimedio R, Sadocco P (2002) Preparation of biodegradable polyesters/high-amylose-starch composites by reactive blending and their characterization. J Appl Polym Sci 83:1432–1442

    CAS  Google Scholar 

  • Avella M, Martuscelli E, Raimo M (2000) Properties of blends and composites based on poly(3-hydroxy) butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545

    CAS  Google Scholar 

  • Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    CAS  Google Scholar 

  • Bhatt R, Patel K, Trivedi U (2011) Biodegradation of poly(3-hydroxyalkanoates). In: A handbook of applied biopolymer technology: synthesis, degradation and applications, pp 311–331

    Google Scholar 

  • Bonartsev A, Boskhomdziev A, Voinova V, Makhina T, Myshkina V, Yakovlev S, Iordanskii A (2012) Degradationof poly(3-hydroxybutyrate) and its derivatives: characterization and kinect behavior. Chem Chem Technol 6:385–392

    Google Scholar 

  • Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    CAS  Google Scholar 

  • Boyandin AN, Rudnev VP, Ivonin VN, Prudnikova SV, Korobikhina KI, Filipenko ML, Volova TG, Sinskey AJ (2012) Biodegradation of polyhydroxyalkanoate films in natural environments. Macromol Symp 320:38–42

    CAS  Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. J Biotechnol 65:127–161

    CAS  Google Scholar 

  • Byrne MT, McNamee WP, Gun’ko YK (2008) Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites. Nanotechnology 19:1–9

    Google Scholar 

  • Chan KHK, Wong SY, Tiju WC, Li X, Kotaki M, He CB (2010) Morphologies and electrical properties of electrospun poly [(R)-3-hydroxybutyrate–co–(R)-3-hydroxyvalerate]/multiwalled carbon nanotubes fibers. J Appl Polym Sci 116:1030–1035

    CAS  Google Scholar 

  • Charles PP, Owens FJ (2003) Introduction to nanotechnology. Wiley

    Google Scholar 

  • Chen Y, Yang G, Chen Q (2002) Solid-state NMR study on the structure and mobility of the noncrystalline region of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate–co–3-hydroxyvalerate). Polymer 43:2095–2099

    Google Scholar 

  • Choi EY, Roh SC, Kim CK (2014) Noncovalent functionalization of multi-walled carbon nanotubes with pyrene-linked nylon66 for high performance nylon66/multi-walled carbon nanotube composites. Carbon 72:160–168

    CAS  Google Scholar 

  • Choi JS, Park WH (2004) Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polym Test 23:455–460

    CAS  Google Scholar 

  • Choi WM, Kim TW, Park OO, Chang YK,  Lee JW (2003) Preparation and characterization of Poly(hydroxybutyrate-co-hydroxyvalerate)–organoclay nanocomposites. J Appl Polym Sci 90:525–529

    Google Scholar 

  • Coleman JN, KhanU Blau WJ, Gun’ko YK (2006a) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652

    CAS  Google Scholar 

  • Coleman JN, Khan U, Gun’ko YK (2006b) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    CAS  Google Scholar 

  • Damian C, Andreea M, Iovu H (2010) Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes. U.P.B. Sci Bull 72:163–174

    CAS  Google Scholar 

  • Deroiné M, Le Duigou A, Corre YM, Le Gac PY, Davies P, César G, Bruzaud S (2014) Seawater accelerated ageing of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). Polym Degrad Stab 105:237–247

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Google Scholar 

  • Dufresne A, Dupeyre D, Paillet M (2003) Lignocellulosic flour-reinforced poly(hydroxybutyrate–co–valerate) composites. J Appl Polym Sci 87:1302–1315

    CAS  Google Scholar 

  • Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492–4502

    CAS  Google Scholar 

  • Eggers J, Steinbüchel A (2013) Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J Bacteriol 195:3213–3223

    CAS  Google Scholar 

  • El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly(3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674

    CAS  Google Scholar 

  • Esawi AMK, Salem HG, Hussein HM, Ramadan AR (2010) Effect of processing technique on the dispersion of carbon nanotubes within polypropylene carbon nanotube-composites and its effect on their mechanical properties. Polym Compos 31:772–780

    CAS  Google Scholar 

  • Fei B, Chen C, Chen S, Peng S, Zhuang Y, An Y (2004) Crosslinking of poly [(3-hydroxybutyrate)–co–(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym Int 53:937–943

    CAS  Google Scholar 

  • Feng L, Wang Y, Inagawa Y, Kasuya K, Saito T, Doi Y, Inoue Y (2004) Enzymatic degradation behavior of comonomer compositionally fractionated bacterial poly(3-hydroxybutyrate–co–3-hydroxyvalerate)s by poly(3-hydroxyalkanoate) depolymerases isolated from Ralstonia pickettii T1 and Acidovorax sp. TP4. Polym Degrad Stab 84:95–104

    CAS  Google Scholar 

  • Ferreira BMP, Zavaglia CAC, Duek EAR (2002) Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J Appl Polym Sci 86:2898–2906

    CAS  Google Scholar 

  • Filho A, Fagan S (2007) Funcionalização de nanotubos de carbono. Quim Nova 30:1695–1703

    Google Scholar 

  • Fradinho JC, Domingos JMB, Carvalho G, Oehmen A, Reis MAM (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153

    CAS  Google Scholar 

  • Gaharwar AK, Schexnailder PJ, Schmidt G (2011) Nanocomposite polymer biomaterials for tissue repair of bone and cartilage: amaterial science perspective. In: Nanobiomaterials handbook. CRC Press, pp 1–28

    Google Scholar 

  • Gonçalves SPC, Franchetti SMM (2013) Respirometric evaluation of the biodegradability of films of PE/PHBV blends. Int J Mater Sci 3:54–60

    Google Scholar 

  • Gonzalez A, Irusta L, Fernández-Berridi MJ, Iriarte M, Iruin JJ (2005) Application of pyrolysis/gas chromatography/Fourier transform infrared spectroscopy and TGA techniques in the study of thermal degradation of poly(3-hydroxybutyrate). Polym Degrad Stab 87:347–354

    CAS  Google Scholar 

  • Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060

    CAS  Google Scholar 

  • Grady BP (2011) Carbon nanotube—polymer composites. Wiley, New Jersey

    Google Scholar 

  • Gursel I, Balcik C, Arica Y, Akkus O, Akkas N, Hasirci V (1998) Synthesis and mechanical properties of interpenetrating networks of polyhydroxybutyrate–co–hydroxyvalerate and polyhydroxyethyl methacrylate. Biomaterials 19:1137–1143

    CAS  Google Scholar 

  • Han CC, Ismail J, Kammer HW (2004) Melt reaction in blends of poly(3-hydroxybutyrate–co–3-hydroxyvalerate) and epoxidized natural rubber. Polym Degrad Stab 85:947–955

    CAS  Google Scholar 

  • Han L, Han C, Cao W, Wang X, Bian J, Dong L (2012) Preparation and characterization of biodegradable poly(3-hydroxybutyrate–co–4-hydroxybutyrate)/silica nanocomposites. Polym Eng Sci 52:250–258

    CAS  Google Scholar 

  • Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944

    CAS  Google Scholar 

  • Her SC, Lai CY (2013) Dynamic behavior of nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs). Materials 6:2274–2284

    CAS  Google Scholar 

  • Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem 41:1853–1859

    CAS  Google Scholar 

  • Hu SG, Jou CH, Yang MC (2004) Biocompatibility and antibacterial activity of chitosan and collagen immobilized poly(3-hydroxybutyric acid–co–3-hydroxyvaleric acid). Carbohydr Polym 58:173–179

    CAS  Google Scholar 

  • Hussain F (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing and application: an Overview. J Compos Mater 40:1511–1575

    CAS  Google Scholar 

  • Ishigaki T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M (2004) The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 54:225–233

    CAS  Google Scholar 

  • Iwata T, Doi Y, Tanaka T, Akehata T, Shiromo M, Teramachi S (1997) Enzymatic degradation and adsorption on poly [(R) -3-hydroxybutyrate ] single crystals with two types of extracellular PHB depolymerases from comamonas acidovorans YM1609 and alcaligenes faecalis T1. Macromolecules 30:5290–5296

    Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    CAS  Google Scholar 

  • Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008a) Study of poly(3-hydroxybutyrate–co–3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ 16:83–93

    CAS  Google Scholar 

  • Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008b) Study of the poly(3-hydroxybutyrate–co–3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42:2629–2645

    CAS  Google Scholar 

  • Ke Y, Wu G, Wang Y (2014) PHBV/PAM scaffolds with local oriented structure through UV polymerization for tissue engineering. BioMed Res Int 2014:1–9

    Google Scholar 

  • Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326

    CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005) Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem 40:2173–2182

    CAS  Google Scholar 

  • Kim P, Shi L, Majumdar E, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:1–4

    Google Scholar 

  • Koller M, Gasser I, Schmid F, Berg G (2011) Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237

    CAS  Google Scholar 

  • Korn M, Andrade MVAS, Borges SS (2003) Procedimentos analíticos assistidos por ultra-som. Analytica 3:34–39

    Google Scholar 

  • Lai M, Li J, Yang J, Liu J, Tong X, Cheng H (2004) The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate–co–hydroxyvalerate) composite. Polym Int 53:1479–1484

    CAS  Google Scholar 

  • Lee JH, Kim SK, Kim NH (2006) Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scripta Mater 55:1119–1122

    CAS  Google Scholar 

  • Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363

    CAS  Google Scholar 

  • Lemes AP, Marcato PD, Ferreira OP, Alves OL, Duran N (2008) Nanotechnology and applications. In: Nanocomposites of poly(3-Hydroxybutyrate–co–3-Hydroxyvalerate) reinforced with carbon nanotubes and oxidized carbon nanotubes, pp 615–085

    Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    CAS  Google Scholar 

  • Likodimos V, Steriotis TA, Papageorgiou SK, Romanos GE, Marques RRN, Rocha RP, Faria JL, Pereira MFR, Figueiredo JL, Silva AMT, Falaras P (2014) Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon 69:311–326

    CAS  Google Scholar 

  • Liu CX, Choi JW (2012) Improved dispersion of carbon nanotubes in polymers at high concentrations. Nanomaterials 2:329–347

    CAS  Google Scholar 

  • Liu WJ, Yang L, Wang Z, Dong LS, Liu JJ (2002) Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). J Appl Polym Sci 86:2145–2152

    CAS  Google Scholar 

  • Lo WH, Yu J (2002) Effects of the energy dissipation rate and surface erosion on the biodegradation of poly(hydroxybutyrate–co–hydroxyvalerate) and its blends with synthetic polymers in an aquatic medium. J Appl Polym Sci 83:1036–1045

    CAS  Google Scholar 

  • Lotto NT, Calil MR, Guedes CGF, Rosa DS (2004) The effect of temperature on the biodegradation test. Materials Science and Engineering C 24:659-662

    Google Scholar 

  • Luo JT, Wen H, Wu WF, Chou CP (2008) Mechanical research of carbon nanotubes/PMMA composite films. Polym Compos 29:1285–1290

    CAS  Google Scholar 

  • Luo M, Li Y, Jin S, Sang S, Zhao L, Wang Q, Li Y (2013) Microstructure and mechanical properties of multi-walled carbon nanotubes containing Al2O3–C refractories with addition of polycarbosilane. Ceram Int 39:4831–4838

    CAS  Google Scholar 

  • Luo S, Netravali A (2003) A study of physical and mechanical properties of poly(hydroxybutyrate–co–hydroxyvalerate) during composting. Polym Degrad Stab 80:59–66

    CAS  Google Scholar 

  • Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41:1345–1367

    Google Scholar 

  • Ma Y, Zheng Y, Wei G, Song W, Hu T, Yang H, Xue R (2012) Processing, structure, and properties of multiwalled carbon nanotube/poly(hydroxybutyrate-co-valerate) biopolymer nanocomposites. J Appl Polym Sci 125:E620–E629

    CAS  Google Scholar 

  • Madbouly SA, Schrader JA, Srinivasan G, Liu K, McCabe KG, Grewell D, Graves WL, Kessler MR (2014) Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites. Green Chem 16:1911–1920

    CAS  Google Scholar 

  • Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 8:3393–3400

    CAS  Google Scholar 

  • Maiti P, Batt CA, Giannelis EP (2003) Biodegradable polyester/layered silicate nanocomposites. Mater Res Soc Symp Proc 740(I5):3

    Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    CAS  Google Scholar 

  • Mukai K, Yamada K, Doi Y (1993) Kinetics and mechanism of heterogeneous hydrolysis of poly [(R)-3-hydroxybutyrate] film by PHA depolymerases. Int J Biol Macromol 15:361–366

    CAS  Google Scholar 

  • Mylvaganam K, Zhang LC (2007) Fabrication and application of polymer composites comprising carbon nanotubes. Recent Pat Nanotechnol 1:59–65

    CAS  Google Scholar 

  • Nobes GAR, Marchessault RH, Briese BH, Jendrossek D (1998) Microscopic visualization of the enzymatic degradation of poly(3HB–co–3HV) and poly(3HV) single crystals by PHA depolymerases from Pseudomonas lemoignei. J Environ Polym Degrad 6:99–107

    CAS  Google Scholar 

  • Nobes GAR, Marchessault RH, Chanzy H, Briese BH, Jendrossek D (1996) Splintering of poly(3-hydroxybutyrate) single crystals by PHB-depolymerase a from Pseudomonas lemoignei. Macromolecules 29:8330–8333

    CAS  Google Scholar 

  • Numata K, Abe H, Iwata T (2009) Biodegradability of poly(hydroxyalkanoate) materials. Materials 2:1104–1126

    CAS  Google Scholar 

  • Numata K, Kikkawa Y, Tsuge T, Iwata T, Doi Y, Abe H (2006) Adsorption of biopolyester depolymerase on silicon wafer and poly [(R)-3-hydroxybutyric acid] single crystal revealed by real-time AFM. Macromol Biosci 6:41–50

    CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates : biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    CAS  Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    CAS  Google Scholar 

  • Reinsch VE, Kelley SS (1996) Crystallization of poly(hydroxybutyrate–co–hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64:1785–1796

    Google Scholar 

  • Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37:781–819

    CAS  Google Scholar 

  • Ruiz I, Hermida ÉB, Baldessari A (2011) Fabrication and characterization of porous PHBV scaffolds for tissue engineering. J Phys: Conf Ser 332:1–10

    Google Scholar 

  • Sahoo NG, Jung YC, So HH, Cho JW (2007) Synthesis of polyurethane nanocomposites of functionalized carbon nanotubes by in-situ polymerization Methods. J Korean Physycal Soc 51:S1–S6

    CAS  Google Scholar 

  • Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    CAS  Google Scholar 

  • Sanchez-Garcia MD, Lagaron JM, Hoa SV (2010) Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol 70:1095–1105

    CAS  Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-beta-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238

    CAS  Google Scholar 

  • Shan GF, Gong X, Chen WP, Chen L, Zhu MF (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). Colloid Polym Sci 289:1005–1014

    CAS  Google Scholar 

  • Shang L, Fei Q, Zhang YH, Wang XZ, Fan DD, Chang HN (2011) Thermal properties and biodegradability studies of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). J Polym Environ 20:23–28

    Google Scholar 

  • Silva AP, Montanheiro TLA, Duran N, Lemes AP (2013) Characterization of PHBV/carbon nanotubes nanocomposites after biodegradation in soil. In: XII Brazilian MRS Meeting 6JS2

    Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    CAS  Google Scholar 

  • Spyros A, Kimmich R, Briese BH, Jendrossek D (1997) 1H NMR imaging study of enzymatic degradation in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate–co–3-hydroxyvalerate). Evidence for preferential degradation of the amorphous phase by PHB depolymerase B from pseudomonas lemoignei. Macromolecules 30:8218–8225

    CAS  Google Scholar 

  • Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng L, Pilla S (2013) Melt compounding of poly(3-hydroxybutyrate–co–3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449

    CAS  Google Scholar 

  • Srubar WV, Pilla S, Wright ZC, Ryan CA, Greene JP, Frank CW, Billington SL (2012) Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites. Compos Sci Technol 72:708–715

    CAS  Google Scholar 

  • Stobinski L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, Judek J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloy Compd 501:77–84

    CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    CAS  Google Scholar 

  • Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785

    CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    CAS  Google Scholar 

  • Ten E, Jiang L, Wolcott MP (2013) Preparation and properties of aligned poly(3-hydroxybutyrate–co–3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 92:206–213

    CAS  Google Scholar 

  • Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate–co–3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51:2652–2660

    CAS  Google Scholar 

  • Thakur VK and Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Google Scholar 

  • Thiré RMDSM, Arruda LC, Barreto LS (2011) Morphology and thermal properties of poly(3-hydroxybutyrate–co–3-hydroxyvalerate)/attapulgite nanocomposites. Mater Res 14:340–344

    Google Scholar 

  • Uchino T, Bourdakos KN, Groot CH, Ashburn P, Kiziroglou ME, Dilliway GD, Smith DC (2005) Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands. Appl Phys Lett 86:233110

    Google Scholar 

  • Valentini L, Fabbri P, Messori M, Esposti MD, Bon SB (2014) Multilayer films composed of conductive poly(3-hydroxybutyrate)/carbon nanotubes bionanocomposites and a photoresponsive conducting polymer. J Polym Sci, Part B: Polym Phys 52:596–602

    CAS  Google Scholar 

  • Vidhate S, Innocentini-mei L, Souza NAD (2012) Mechanical and electrical multifunctional poly(3-hydroxybutyrate–co–3-hydroxyvalerate)—multiwall carbon nanotube nanocomposites. Polym Eng Sci 52:1367–1374

    CAS  Google Scholar 

  • Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuânf BB, Dungf VV, Gitelson II (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95:2350–2359

    CAS  Google Scholar 

  • Wang S, Song C, Chen G, Guo T, Liu J, Zhang B, Takeuchi S (2005a) Characteristics and biodegradation properties of poly(3-hydroxybutyrate–co–3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87:69–76

    CAS  Google Scholar 

  • Wang S, Song C, Mizuno W, Sano M, Maki M, Yang C, Zhang B, Takeuchi S (2005b) Estimation on biodegradability of poly(3-hydroxybutyrate–co–3-hydroxyvalerate) (PHB/V) and numbers of aerobic PHB/V degrading microorganisms in different natural environments. J Polym Environ 13:39–45

    Google Scholar 

  • Xu C, Qiu Z (2009) Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly(hydroxybutyrate)/ multiwalled carbon nanotubes nanocomposites. J Polym Sci, Part B: Polym Phys 47:2238–2246

    CAS  Google Scholar 

  • Yamashita K, Funato T, Suzuki Y, Teramachi S, Doi Y (2003) Characteristic interactions between poly(hydroxybutyrate) depolymerase and poly [(R)-3-hydroxybutyrate] film studied by a quartz crystal microbalance. Macromol Biosci 3:694–702

    CAS  Google Scholar 

  • Yang L, Setyowati K, Li A, Gong S, Chen J (2008) Reversible infrared actuation of carbon nanotube–liquid crystalline elastomer nanocomposites. Adv Mater 20:2271–2275

    CAS  Google Scholar 

  • Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 5:1842–1846

    CAS  Google Scholar 

  • Yu H, Qin Z, Zhou Z (2011) Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). Prog Nat Sci: Mater Int 21:478–484

    Google Scholar 

  • Yu HY, Qin ZY, Sun B, Yang XG, Yao JM (2014) Reinforcement of transparent poly(3-hydroxybutyrate–co–3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos Sci Technol 94:96–104

    CAS  Google Scholar 

  • Yu HY, Yao JM, Qin ZY, Liu L, Yang XG (2013) Comparison of covalent and noncovalent interactions of carbon nanotubes on the crystallization behavior and thermal properties of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). J Appl Polym Sci 130:4299–4307

    CAS  Google Scholar 

  • Yu W, Lan CH, Wang SJ, Fang PF, Sun YM (2010) Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate–co–3-hydroxyvalerate) nanofibers. Polymer 51:2403–2409

    CAS  Google Scholar 

  • Yun SI, Lo V, Noorman J, Davis J, Russel RA, Holden PJ, Gadd GE (2010) Morphology of composite particles of single wall carbon nanotubes/biodegradable polyhydroxyalkanoates prepared by spray drying. Polym Bull 64:99–106

    CAS  Google Scholar 

  • Zeng H, Gao C, Yan D (2006) Poly(ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818

    CAS  Google Scholar 

  • Zhang K, Park BJ, Fang FF, Choi HJ (2009) Sonochemical preparation of polymer nanocomposites. Molecules 14:2095–2110

    CAS  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    CAS  Google Scholar 

  • Zribi-Maaloul E, Trabelsi I, Elleuch L, Chouayekh H, Ben Salah R (2013) Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus. Int J Biol Macromol 61:82–88

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Lemes, A.P., Montanheiro, T.L.A., Passador, F.R., Durán, N. (2015). Nanocomposites of Polyhydroxyalkanoates Reinforced with Carbon Nanotubes: Chemical and Biological Properties. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_3

Download citation

Publish with us

Policies and ethics