Skip to main content

Application of DNA Markers for Genetic Improvement

  • Chapter
Book cover Sorghum Molecular Breeding

Abstract

The advent of DNA markers has heralded a new era in genetics and plant breeding. DNA markers have provided valuable tools in various genetic analyses ranging from diversity, development of molecular maps, and gene/QTL mapping to the positional cloning of genes. Marker-assisted selection has the potential to pyramid favorable gene combinations for improved trait performance. Over the past two decades, considerable progress has been made in the development of genomic resources in sorghum. Development and use of new marker systems and dense maps has resulted in tagging and mapping of major genes and several quantitative traits of economic importance. QTL mapping of various agronomic, biotic, abiotic stress traits has resulted in identification of many QTL spread across the genome. Validation and fine mapping of QTL provide an opportunity to employ MAS for sorghum improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkhalik AF, Shishido R, Nomura K, Ikehashi H (2005) QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet 110:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Afanasenko OS, Makarova IG, Zubkovich AA (1999) The number of genes controlling resistance to Pyrenophora teres Drechs. strains in barley. Russ J Genet 35:274–283

    CAS  Google Scholar 

  • Agrama H, Widle G, Reese J, Campbell L, Tuinstra M (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor Appl Genet 104:1373–1378

    Article  CAS  PubMed  Google Scholar 

  • Akhare AA, Sakhare SB, Kulwal PL, Dhumale DB, Kharkar A (2008) RAPD profile studies in sorghum for identification of hybrids and their parents. Int J Integr Biol 3:18–24

    CAS  Google Scholar 

  • Anahosur KH, Rao MVR (1977) A note on the epidemic of charcoal rot of sorghum in the regional research station, Dharwar. Sorghum Newsl 20:22

    Google Scholar 

  • Aruna C, Bhagwat VR, Madhusudhana R, Vittal S, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N (2011) Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 122:1617–1630

    Article  CAS  PubMed  Google Scholar 

  • Audilakshmi S, Stenhouse JW, Reddy TP (2005) Genetic analysis of grain mold resistance in white seed sorghum genotypes. Euphytica 145:95–101

    Article  Google Scholar 

  • Bandyopadhyay R, Mughogho LK (1988) Evaluation of field screening techniques for resistance to sorghum grain molds. Plant Dis 72:500–503

    Article  Google Scholar 

  • Bandyopadhyay R, Frederickson DE, McLaren NW, Odvody GN, Ryley MJ (1998) Ergot: a new disease threat to sorghum in the Americas and Australia. Plant Dis 82:356–367

    Article  Google Scholar 

  • Beil GM, Atkins RE (1967) Estimates of general and specific combining ability in F1 hybrids for grain yield and its components in grain sorghum, Sorghum vulgare Pers. Crop Sci 7:225–228

    Article  Google Scholar 

  • Bergquist RR (1974) The determination of physiologic races of sorghum rust in Hawaii. Proc Am Phytopathol Soc 1:67–70

    Google Scholar 

  • Bhat BV, Balakrishna D, Sathish K, Srinivas G, Seetharama N (2004) Molecular marker-aided approaches for sorghum improvement. AgBiotechNet 6:1–13

    Google Scholar 

  • Blum A (1988) Drought resistance. Plant breeding for stress environments. CRC Press, Boca Raton, pp 43–76

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boora KS, Frederiksen RA, Magill CW (1999) A molecular marker that segregates with sorghum leaf blight resistance in one cross is maternally inherited in another. Mol Gen Genet 261:317–322

    Article  CAS  PubMed  Google Scholar 

  • Borrell AK, Hammer GL (2000) Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci 40:1295–1307

    Article  Google Scholar 

  • Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014a) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65:6251–6263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borrell AK, Oosterom EJ, Mullet JE, George‐Jaeggli B, Jordan DR, Klein PE, Hammer GL (2014b) Stay‐green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol 203:817–830

    Article  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  CAS  PubMed  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed Central  PubMed  Google Scholar 

  • Burow G, Burke JJ, Xin Z, Franks CD (2011) Genetic dissection of early-season cold tolerance in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 28:391–402

    Article  Google Scholar 

  • Caddel JL, Weibel DE (1971) Effect of photoperiod and temperature on the development of sorghum. Agron J 63:799–803

    Article  Google Scholar 

  • Casela CR, Ferreira AS, Santos FG, Guimaraes FB (2008) Sorghum diseases in Brazil. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, p 379

    Google Scholar 

  • Cha KW, Lee YJ, Koh HJ, Lee BM, Nam YW, Paek NC (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet 104:526–532

    Article  CAS  PubMed  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt M-M, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma 3 , encodes a phytochrome B. Plant Physiol 113:611–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cisse ND, Ejeta G (2003) Genetic variation and relationships among seedling vigor traits in sorghum. Crop Sci 43:824–828

    Article  Google Scholar 

  • Coleman OH, Dean JL (1961) The inheritance of resistance to rust in sorgo. Crop Sci 1:152–154

    Article  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  CAS  PubMed  Google Scholar 

  • Dabholkar AR, Sharma HC, Baghel SS (1980) Inheritance of rust resistance in Sorghum bicolor (L.) Moench. JNKVV Res J 14:12–14

    Google Scholar 

  • Deeming JC (1972) A review of the taxonomy of African shoot flies of sorghum. Samaru Res Bull 236:24p

    Google Scholar 

  • Dhillon MK, Sharma HC, Reddy BVS, Singh R, Naresh JS (2006) Inheritance of resistance to sorghum shoot fly. Crop Sci 46:1377–1383

    Article  Google Scholar 

  • Dodd JL (1980) The photosynthetic stress-translocation balance concept of sorghum stalk rots. In: Sorghum diseases, a world review. Proceedings of the international workshop on sorghum diseases, sponsored jointly by Texas A&M University (USA) and ICRISAT, Patancheru, pp 300–305

    Google Scholar 

  • Downes RW, Marshall DR (1971) Low temperature induced male sterility in Sorghum bicolor. Aust J Exp Agric Anim Husb 11:352–356

    Article  Google Scholar 

  • Duncan RR (1984) The association of plant senescence with root and stalk diseases in sorghum. In: Mughogho LK, Rosenberg G (eds) Sorghum root and stalk rots, a critical review. ICRISAT, Patancheru, pp 99–110

    Google Scholar 

  • Eathington SR (2005) Practical applications of molecular technology in the development of commercial maize hybrids. Proceedings of the 60th annual Corn and Sorghum Seed Research conferences. American Seed Trade Association, Washington, DC

    Google Scholar 

  • Eddleman BR, Chang CC, McCarl BA (1999) Economic benefits from grain sorghum variety improvement in the United States. In: Wiseman BR, Webster JR (eds) Economic, environmental, and social benefits of resistance in field crops. Thomas Say Publications, Entomological Society of America, Lanham, pp 17–44

    Google Scholar 

  • Edmunds LK, Zummo N (1975) Sorghum diseases in the United States and their control. Agriculture Handbook No. 468, Agricultural Research Service, United States Department of Agriculture in cooperation with Kansas and Mississippi Agricultural Experimental Stations, Washington, DC

    Google Scholar 

  • Edmunds LK, Voigt RL, Carasso FM (1964) Use of Arizona climate to induce charcoal rot in grain sorghum. Plant Dis Reptr 48:300–302

    Google Scholar 

  • Edwards D, Forster JW, Chagné D, Batley J (2007) What are SNPs? In: Association mapping in plants. Springer, New York, pp 41–52

    Google Scholar 

  • Erpelding JE, Wang ML (2007) Response to anthracnose infection for a random selection of sorghum germplasm. Plant Pathol J 6:127–133

    Article  Google Scholar 

  • Esele JP, Frederiksen RA, Miller FR (1993) The association of genes controlling caryopsis traits with grain mold resistance in sorghum. Phytopathology 83:490–495

    Article  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Folkertsma R, Sajjanar G, Reddy B, Sharma H, Hash CT (2003) Genetic mapping of QTL associated with sorghum shoot fly (Atherigona soccata) resistance in sorghum (Sorghum bicolor). Final abstracts guide, Plant & Animal Genome XI, San Diego, 11–15 Jan 2003, p 42

    Google Scholar 

  • Franks CD, Burow GB, Burke JJ (2006) A comparison of US and Chinese sorghum germplasm for early season cold tolerance. Crop Sci 46:1371–1376

    Article  Google Scholar 

  • Frederiksen RA, Odvody GN (2000) Compendium of sorghum diseases, 2nd edn. American Phytopathological Society, St. Paul

    Google Scholar 

  • Frederiksen R, Rosenow D (1986) Controlling sorghum diseases. In: Frederiksen RA (ed) Compendium of Sorghum diseases. American Phytopathological Society in cooperation with Dept. of Plant Pathology and Microbiology, Texas A&M University, St. Paul, pp 65–67

    Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39:967–975

    Article  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin S, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  CAS  PubMed  Google Scholar 

  • Garud TB, Borikar ST (1985) Genetics of charcoal rot resistance in sorghum. Sorghum Newsl 28:87

    Google Scholar 

  • Gebrekidan B, Kebede Y (1979) Highlights of sorghum improvement in Ethiopia. Sorghum Newsl 22:2–5

    Google Scholar 

  • Glueck JA, Rooney LW (1980) Chemistry and structure of grain in relation to mold resistance. In: Williams RJ, Frederiksen RA, Mughogho LK (eds) Sorghum diseases, a world review. Proceedings of the international workshop on sorghum diseases, 11–15 Dec 1978. ICRISAT, Patancheru, pp 119–140

    Google Scholar 

  • Gowda PSB, Frederiksen RA, Magill CW, Xu GW (1995) DNA markers for downy mildew resistance genes in sorghum. Genome 38:823–826

    Article  CAS  PubMed  Google Scholar 

  • Grewal RPS (1988) Genetic basis of resistance to zonate leaf spot disease in forage sorghum. Theor Appl Genet 76:550–554

    Article  CAS  PubMed  Google Scholar 

  • Halalli M, Gowda B, Kulkarni K, Goud J (1983) Evaluation of advanced generation progenies for resistance to shootfly in sorghum. Indian J Genet 43:291–293

    Google Scholar 

  • Harris KM (1976) The sorghum midge. Annals Appl Biol 84:114–118

    Article  Google Scholar 

  • Harris HB, Burns RE (1973) Relationship between tannin content of sorghum grain and preharvest seed molding. Agron J 65:957–959

    Article  CAS  Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  CAS  PubMed  Google Scholar 

  • Hart G, Schertz K, Peng Y, Syed N (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Harvey T, Seifers D, Kofoid K (1996) Effect of sorghum hybrid and imidacloprid seed treatment on infestations by corn leaf aphid and greenbug (Homoptera: Aphididae) and the spread of sugarcane mosaic virus strain MDMV-B. J Agric Entomol 13:9–15

    Google Scholar 

  • Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash CT, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    CAS  PubMed  Google Scholar 

  • Henzell R, Franzmann B, Brengman R (1994) Sorghum midge resistance research in Australia. Sorghum Improvement Conference of North America, USA; University of Georgia, USA; International Crops Research Institute for the Semi-Arid Tropics, Patacheru

    Google Scholar 

  • Henzell R, Hare B, Jordan D, Fletcher D, McCosker A, Bunker G, Persley D (2001) Sorghum breeding in Australia: public and private endeavours. Proceedings of the 4th Australian sorghum conference, Kooralbyn

    Google Scholar 

  • Hepperly PR (1990) Sorghum rust: II. Control and losses. J Agric Univ Puerto Rico 74:37–44

    Google Scholar 

  • Hesketh J, Chase S, Nanda D (1969) Environmental and genetic modification of leaf number in maize, sorghum, and Hungarian millet. Crop Sci 9:460–463

    Article  Google Scholar 

  • Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs-challenges and opportunities. New directions for a diverse planet. Proceedings of the 4th international crop science congress. The Regional Institute Ltd, Gosford

    Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing/CRC Press, Oxford/Boca Raton, pp 30–59

    Google Scholar 

  • Hulluka M, Esele J (1992) Sorghum diseases in eastern Africa. In: de-Milliano WJA, Frederiksen RA, Bergston GD (eds) Sorghum and millets diseases: a second world review. ICRISAT, Patancheru, p 21

    Google Scholar 

  • Ibrahim OE, Nyquist W, Axtell J (1985) Quantitative inheritance and correlations of agronomic and grain quality traits of sorghum. Crop Sci 25:649–654

    Article  Google Scholar 

  • ICRISAT (1992) Annual Report 1991. International Crop Research Institute for Semi-arid Tropics, Patancheru

    Google Scholar 

  • Indira S, Rana B, Rao N (1982) Further studies on the incidence and genetics of rust resistance in sorghum. Indian J Genet 42:106–113

    Google Scholar 

  • Indira S, Rana B, Rao N (1983) Genetics of host plant resistance to charcoal rot in sorghum. Indian J Genet 43:472–477

    Google Scholar 

  • Isakeit T, Odvody G, Shelby R (1998) First report of sorghum ergot caused by Claviceps africana in the United States. Plant Dis 82:592–592

    Article  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Anderson SB (ed) Plant breeding from laboratories to fields. InTech, Croatia, pp 45–83

    Google Scholar 

  • Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688–698

    Article  CAS  PubMed  Google Scholar 

  • Jordan D, Hunt C, Cruickshank A, Borrell A, Henzell R (2012) The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci 52:1153–1161

    Article  Google Scholar 

  • Jotwani M, Marwaha K, Srivastava K, Young W (1970) Seasonal incidence of shoot fly (Atherigona varia soccata Rond) in jowar hybrids at Delhi. Indian J Entomol 32:7–15

    Google Scholar 

  • Kamatar M, Hiremath R, Palakshappa M (2000) Development of charcoal rot resistant rabi sorghum variety. Karnataka J Agric Sci 13:376–379

    Google Scholar 

  • Kassahun B, Bidinger F, Hash C, Kuruvinashetti M (2010) Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica 172:351–362

    Article  Google Scholar 

  • Katsar CS, Paterson AH, Teetes GL, Peterson GC (2002) Molecular analysis of sorghum resistance to the greenbug (Homoptera: Aphididae). J Econ Entomol 95:448–457

    Article  CAS  PubMed  Google Scholar 

  • Kebede H, Subudhi P, Rosenow D, Nguyen H (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Klein R, Rodriguez-Herrera R, Schlueter J, Klein P, Yu Z, Rooney W (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48(Suppl):S12–S26

    Google Scholar 

  • Knoll J, Ejeta G (2008) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116:541–553

    Article  PubMed  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Little CR, Perumal R, Tesso T, Prom LK, Odvody GN, Magill CW (2012) Sorghum pathology and biotechnology – a fungal disease perspective: part I. Grain mold, head smut, and ergot. Eur J Plant Sci Biotechnol 6:10–30

    Google Scholar 

  • Luquez VM, Guiamét JJ (2001) Effects of the ‘stay green’ genotype GGd1d1d2d2 on leaf gas exchange, dry matter accumulation and seed yield in soybean (Glycine max L. Merr.). Annals Bot 87:313–318

    Article  CAS  Google Scholar 

  • Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Virmani S, Kumar I (1998) Technological innovations to lower the cost of hybrid rice seed production. In: Virmani SS, Siddiq EA, Muralidharan K (eds) Advances in hybrid rice technology. IRRI, Manila, pp 111–128

    Google Scholar 

  • Maranville JW (1974) What’s new in sorghum physiology? In: Wilkinson D (ed) Proceedings of the 29th annual corn and sorghum research conference. American Seed Trade Association, Washington, DC, pp 22–28

    Google Scholar 

  • Mathur K, Bunker R (2002) Leaf blight of sorghum caused by Drechslera australiensis – a new report from India. Int Sorghum Millets Newsl 43:60

    Google Scholar 

  • McBee G (1984) Relation of senescence, and kernel maturity to carbohydrate metabolism in sorghum. In: Mughogho LK (ed) Sorghum root and stalk diseases, a critical review. Proceedings of the consultative group discussion of research needs and strategies for control of sorghum root and stalk diseases, Bellagio, 27 Nov–2 Dec 1983. ICRISAT, Patancheru, pp 119–129

    Google Scholar 

  • McIntyre CL, Hermann SM, Casu RE et al (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor Appl Genet 109:875–883

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400

    Article  CAS  PubMed  Google Scholar 

  • Meng QC, Chen YP, Yang XH, Zhao W, Zhang YB, Yuan JH (2009) Seed purity test for maize hybrid Suyu 20 using SSR markers. Jiangsu J Agric Sci 25:508–512

    Google Scholar 

  • Menkir A, Ejeta G, Butler L, Melakeberhan A (1996) Physical and chemical kernel properties associated with resistance to grain mold in sorghum. Cereal Chem 73:613–617

    CAS  Google Scholar 

  • Miller FR, Cruzado HJ (1969) Allelic interactions at the Pu locus in Sorghum bicolor (L.) Moench. Crop Sci 9:336–338

    Article  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mughogho LK (1984) Sorghum root and stalk rots. A critical review. Proceedings of the consultative group discussion of research needs and strategies for control of sorghum root and stalk diseases, Bellagio, 27 Nov–2 Dec 1983. ICRISAT, Patancheru

    Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  CAS  PubMed  Google Scholar 

  • Murali Mohan S, Madhusudhana R, Mathur K, Howarth CJ, Srinivas G, Satish K, Reddy RN, Seetharama N (2009) Co-localization of quantitative trait loci for foliar disease resistance in sorghum. Plant Breed 128:532–535

    Article  Google Scholar 

  • Murali Mohan S, Madhusudhana R, Mathur K, Chakravarthi DVN, Rathore S, Nagaraja Reddy R, Satish K, Srinivas G, Sarada Mani N, Seetharama N (2010) Identification of quantitative trait loci associated with resistance to foliar diseases in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 176:199–211

    Article  CAS  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci U S A 108:16469–16474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy RL, Daryl TM, Brady JA, Rooney WL, Shanshan Y, Klein PE, Mullet JE (2014) Ghd7 (Ma 6 ) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Gen. doi:10.3835/plantgenome2013.11.0040

    Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain non-structural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Nagaraj N, Reese JC, Tuinstra MR, Smith CM, Amand PS, Kirkham MB, Kofoid KD, Campbell LR, Wilde GE (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J Econ Entomol 98:595–602

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Chakravarthi DVN, Mehtre SP, Seetharama N, Patil JV (2013) Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 126:1921–1939

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja Reddy RR, Madhusudhana R, Murali Mohan S, Seetharama N, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genom 15(1):909

    Article  Google Scholar 

  • Nandakumar N, Singh AK, Sharma RK, Mohapatra T, Prabhu KV, Zaman FU (2004) Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers. Euphytica 136:257–264

    Article  CAS  Google Scholar 

  • Nguyen HT, Chandra Babu R, Blum A (1997) Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37:1426–1434

    Article  Google Scholar 

  • Nwanze K (1997) Screening for resistance to sorghum shoot fly. In: Sharma HC, Singh F, Nwaze KF (eds) Plant resistance to insect in sorghum. ICRISAT, Patancheru, pp 35–37

    Google Scholar 

  • Oh BJ, Frederiksen RA, Magill CW (1994) Identification of molecular markers linked to head smut resistance gene (Shs) in sorghum by RFLP and RAPD analyses. Phytopathology 84:830–833

    Article  CAS  Google Scholar 

  • Padmaja PG, Madhusudhana R, Seetharama N (2010a) Sorghum shoot fly. Directorate of Sorghum Research, Rajendranagar. ISBN 81-89335-29-4

    Google Scholar 

  • Padmaja PG, Woodcock CM, Bruce TJ (2010b) Electrophysiological and behavioral responses of sorghum shoot fly, Atherigona soccata, to sorghum volatiles. J Chem Ecol 36:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. Soil Sci 72:481

    Article  Google Scholar 

  • Parh DK, Jordan DR, Aitken EA, Mace ES, Jun-Ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Huang Y, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Patil S (2011) Studies on genetic diversity assessment in sorghum (Sorghum bicolor L. Moench) genotypes and hybrid purity test employing SSR markers. MSc thesis submitted to ANGRAU, Rajendranagar

    Google Scholar 

  • Patil A, Fakrudin B, Salimath PM, Rajkumar (2012) Genome-wide molecular mapping and QTL analysis, validated across locations and years for charcoal rot disease incidence traits in Sorghum bicolor (L.) Moench. Indian J Genet 72:296–302

    Google Scholar 

  • Patil-Kulkarni BG, Puttarudrappa A, Kajjari NB, Goud JV (1972) Breeding for rust resistance in sorghum. Indian Phytopathol 25:166–168

    Google Scholar 

  • Pažoutová S, Olšovská J, Linka M, Kolı́nská R, Flieger M (2000) Chemoraces and habitat specialization of Claviceps purpurea populations. Appl Environ Microbiol 66:5419–5425

    Article  PubMed Central  PubMed  Google Scholar 

  • Pedgaonkar SM, Mayee CD (1990) Stalk water potential in relation to charcoal rot of sorghum. Indian Phytopathology 43:192–196

    Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  CAS  PubMed  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  PubMed  Google Scholar 

  • Pereira MG, Ahnert D, Lee M, Klier K (1995) Genetic mapping of quantitative trait loci for panicle characteristics and seed weight in sorghum. Rev Bras Genet 18:249–257

    CAS  Google Scholar 

  • Qingshan L, Dahlberg JA (2001) Chinese sorghum genetic resources. Econ Bot 55:401–425

    Article  Google Scholar 

  • Quinby JR (1967) The maturity genes of sorghum. Adv Agron 19:267–305

    Article  Google Scholar 

  • Quinby JR (1973) The genetic control of flowering and growth in sorghum. Adv Agron 25:125–162

    Article  CAS  Google Scholar 

  • Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216

    Article  Google Scholar 

  • Ramakrishna W, Emberton J, SanMiguel P, Ogden M, Llaca V, Messing J, Bennetzen JL (2002) Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex. Plant Physiol 130:1728–1738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramasamy P, Menz MA, Mehta PJ et al (2009) Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica 165:597–606

    Article  CAS  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Rana BS, Tripathi DP, Rao NGP (1976) Genetic analysis of some exotic × Indian crosses in sorghum. XV. Inheritance of resistance to sorghum rust. Indian J Genet 36:244–249

    Google Scholar 

  • Rana BS, Anahosur KH, Rao VJM, Parameshwarappa R, Rao NGP (1982) Inheritance of field resistance to sorghum charcoal rot and selection for multiple disease resistance. Indian J Genet 42:302–310

    Google Scholar 

  • Rana B, Rao M, Indira S, Singh B et al (1999) Technology for increasing sorghum production and value addition. Director and Project Coordinator (AICSIP) National Research Centre for Sorghum, Hyderabad

    Google Scholar 

  • Rana MK, Singh S, Bhat KV (2007) RAPD, STMS and ISSR markers for genetic diversity and hybrid seed purity testing in cotton. Seed Sci Technol 35:709–721

    Article  Google Scholar 

  • Rao KN, Reddy VS, Williams RJ, House LR (1980) The ICRISAT charcoal rot resistance program. Proceedings of the international workshop on Sorghum diseases, Hyderabad, 11–15 Dec 1978, pp 315–321

    Google Scholar 

  • Rao GMR, Patil SJ, Anahosur KH (1993) Genetics of charcoal rot resistance in Rabi sorghum. Karnataka J Agric Sci 6:113–116

    Google Scholar 

  • Reddy PS, Fakrudin B, Rajkumar, Punnuri SM, Arun SS, Kuruvinashetti MS, Das IK, Seetharama N (2008) Molecular mapping of genomic regions harboring QTLs for stalk rot resistance in sorghum. Euphytica 159:191–198

    Article  CAS  Google Scholar 

  • Ribaut JM, Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:1–6

    Article  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Rodriguez-Herrera R, Rooney WL, Rosenow DT, Frederiksen RA (2000) Inheritance of grain mold resistance in grain sorghum without a pigmented testa. Crop Sci 40:1573–1578

    Article  Google Scholar 

  • Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Article  Google Scholar 

  • Rosenow DT, Frederiksen RA (1982) Breeding for disease resistance in sorghum. In: Sorghum in the eighties. Proceedings of international sorghum workshop, Hyderabad, 2–7 Nov 1981. Oxford & IBH, New Delhi, pp 447–455

    Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Article  Google Scholar 

  • Rosenow DT, Woodfin CA, Clark LE (1988) Breeding for the stay green trait in sorghum. Agronomy abstracts ASA, Madison

    Google Scholar 

  • Rosenow DT, Ejeta G, Clark LE, Gilbert M, Henzell R, Borrell A, Muchow R (1996) Breeding for pre-and post-flowering drought stress resistance in sorghum. In: Rosenow DT, Yohe JM (eds) Proceedings of the international conference on genetic improvement of sorghum and pearl millet. INTSORMIL, Lubbock, pp 400–411

    Google Scholar 

  • Ryley M, Blaney B, Meinke H (1999) Current and future research on sorghum ergot in Australia. Proceedings of the global conference on ergot of sorghum. EMBRAPA-INTSORMIL, Sete Lagoas, pp 59–67

    Google Scholar 

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Reddy RN, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119:1425–1439

    Article  CAS  PubMed  Google Scholar 

  • Satish K, Gutema Z, Grenier C, Rich PJ, Ejeta G (2012a) Molecular tagging and validation of microsatellite markers linked to the low germination stimulant gene (lgs) for Striga resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 124:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Satish K, Madhusudhana R, Padmaja PG, Seetharama N, Patil JV (2012b) Development, genetic mapping of candidate gene-based markers and their significant association with the shoot fly resistance quantitative trait loci in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 30:1573–1591

    Article  CAS  Google Scholar 

  • Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seetharama N, Bidinger FR, Rao KN, Gill KS, Mulgund M (1987) Effect of pattern and severity of moisture deficit stress on stalk rot incidence in Sorghum I. Use of line source irrigation technique, and the effect of time of inoculation. Field Crops Res 15:289–308

    Article  Google Scholar 

  • Sharma H (1985) Screening for sorghum midge [Contarinia sorghicola] resistance and resistance mechanisms. In: Proceedings of international sorghum entomology workshop, College Station, 15–21 Jul 1984. ICRISAT, Patancheru, pp 275–292

    Google Scholar 

  • Sharma HC, Reddy BVS, Stenhouse JW, Nwanze KF (1994) Host plant resistance to sorghum midge, Contarinia sorghicola. Int Sorghum & Millets Newsl 35:30–41

    Google Scholar 

  • Sharma HC, Abraham CV, Vidyasagar P, Stenhouse JW (1996) Gene action for resistance in sorghum to midge, Contarinia sorghicola. Crop Sci 36:259–265

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Singh S (1977) Breeding grain sorghum for cold tolerance. International Sorghum Workshop held at ICRISAT during, Patancheru, pp 6–12

    Google Scholar 

  • Singh SP (1985) Sources of cold tolerance in grain sorghum. Can J Plant Sci 65:251–257

    Article  Google Scholar 

  • Singh S, Bandyopadhyay R (2000) Panicle and seed diseases. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases, 2nd edn. American Phytopathological Society, St Paul, pp 38–40

    Google Scholar 

  • Singh M, Chaudhary K, Singal HR, Magill CW, Boora KS (2006) Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 149:179–187

    Article  CAS  Google Scholar 

  • Smith CM, Khan ZR, Pathak MD (1994) Techniques for evaluating insect resistance in crop plants. CRC Press, Boca Raton

    Google Scholar 

  • Somani RB, Indira S (1999) Effect of grain molds on grain weight in sorghum. J Myco Plant Pathol 29:22–24

    Google Scholar 

  • Soto PE (1974) Ovipositional preference and antibiosis in relation to resistance to a sorghum shoot fly. J Econ Entomol 67:265–267

    Article  CAS  PubMed  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  CAS  PubMed  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Sukhani TR, Jotwani MG (1980) Efficacy of some newer systemic insecticides for the control of sorghum shootfly, Atherigona soccata Rondani. Indian J Entomol 42:76–81

    Google Scholar 

  • Sundaram RM, Naveenkumar B, Biradar SK, Balachandran SM, Mishra B, IlyasAhmed M, Viraktamath BC, Ramesha MS, Sarma NP (2008) Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment. Euphytica 163:215–224

    Article  Google Scholar 

  • Tabbasam N, Mehboob-Ur-Rahman, Zafar Y (2006) DNA-based genotyping of sorghum hybrids. Pak J Bot 38:1599–1604

    Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998) Identification of genomic regions for rust resistance in sorghum. Euphytica 103:287–292

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, Jordan DR, Butler DG, McIntyre CL (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107:116–122

    CAS  PubMed  Google Scholar 

  • Tarumoto I (2005) Glossiness of leaf blades in sorghum (Sorghum bicolor L. Moench); its visual and ultrastructural studies. Jap Agric Res Quart 39:153–160

    Article  Google Scholar 

  • Thakur RP, Reddy BVS, Mathur K (2007) Screening techniques for sorghum diseases, Information: Bulletin No. 76. ICRISAT, Patancheru. ISBN 978-92-9066-504-5

    Google Scholar 

  • Tooley PW, O’Neill NR, Goley ED, Carras MM (2000) Assessment of diversity in Claviceps africana and other Claviceps species by RAM and AFLP analyses. Phytopathology 90:1126–1130

    Article  CAS  PubMed  Google Scholar 

  • Torres-Montalvo H, Mendoza-Onofre LE, Gonzalez-Hernandez VA, Williams-Alanis H (1992) Reaction of tan and non-tan isogenic genotypes to head blight. Sorghum Newsl 33:36

    Google Scholar 

  • Trimboli DS, Burgess LW (1982) The fungi associated with stalk and root rot of grain sorghum in New South Wales [Australia]. Sorghum Newsl 25

    Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough P (1998) Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Article  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013a) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013b) SNP markers linked to leaf rust and grain mold resistance in sorghum. Mol Breed 32:451–462

    Article  CAS  Google Scholar 

  • Vadez V, Deshpande SP, Kholova J, Hammer GL, Borrell AK, Talwar HS, Hash CT (2011) Stay-green quantitative trait loci's effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Funct Plant Biol 38:553–566

    Article  Google Scholar 

  • Van Oosterom EJ, Jayachandran R, Bidinger FR (1996) Diallel analysis of the stay-green trait and its components in sorghum. Crop Sci 36:549–555

    Article  Google Scholar 

  • Wang YH, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breed 30:281–292

    Article  Google Scholar 

  • Waniska RD, Poe JH, Bandyopadhyay R (1989) Effects of growth conditions on grain molding and phenols in sorghum caryopsis. J Cereal Sci 10:217–225

    Article  CAS  Google Scholar 

  • Willey RW, Heath SB (1969) The quantitative relationships between plant population and crop yield. Adv Agron 21:281–321

    Article  Google Scholar 

  • Wu Y, Huang Y (2008) Molecular mapping of QTLs for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench). Theor Appl Genet 117:117–124

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelson RJ (1995) Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed 1:375–387

    Article  CAS  Google Scholar 

  • Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST (2009) QTL mapping of maize (Zea mays) stay‐green traits and their relationship to yield. Plant Breed 128:54–62

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Madhusudhana, R. (2015). Application of DNA Markers for Genetic Improvement. In: Madhusudhana, R., Rajendrakumar, P., Patil, J. (eds) Sorghum Molecular Breeding. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2422-8_4

Download citation

Publish with us

Policies and ethics