Skip to main content

Genetic Engineering for Novel Traits

  • Chapter

Abstract

Accumulation of knowledge on genetic control of plant phenotypic traits in model plants and advances in plant genetic engineering have unravelled new opportunities for the genetic improvement of crops like sorghum and provided the means to manipulate them for human and environmental benefits. Trait-based breeding in sorghum needs to broadly address either those traits that enhance input efficiency or that enhance the quality and quantity of outputs. Improved resistance to biotic and abiotic stresses is the main input trait, whereas improvement of sorghum grain and biomass yields along with superior quality and amenability for efficient utilisation form the target output traits. The potential genetic manipulation approaches and candidate genes for each of these traits have been discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas HK, Accinelli C, Zablotowicz RM, Abel CA, Bruns HA, Dong Y, Shier WT (2008) Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions. J Agric Food Chem 56:7578–7585

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aly R (2007) Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell Dev Biol-Plant 43:304–317

    Article  Google Scholar 

  • Aly R, Cholakh H, Joel DM, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal- On A (2009) Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol J 7:487–498

    Article  CAS  PubMed  Google Scholar 

  • Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC et al (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35:550–557

    Article  Google Scholar 

  • Ayoo LMK, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10(19):3659–3670

    Google Scholar 

  • Bakan B, Melcion D, Richard-Molard D, Cahagnier B (2002) Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J Agric Food Chem 50:728–731

    Article  CAS  PubMed  Google Scholar 

  • Barry BD, Darrah LL, Huckla DL, Antonio AQ, Smith GS, O’Day MH (2000) Performance of transgenic corn hybrids in Missouri for insect control and yield. J Econ Entomol 93:993–999

    Article  CAS  PubMed  Google Scholar 

  • Beachy RN, Fraley RT, Rogers SG (2003) Protection of plants against viral infection. Monsanto Technology LLC and Washington University, United States patent no. 6,608, 241, 19 Aug 2003

    Google Scholar 

  • Bhat BV, Pandey, AK, Ramya S, Pushpa K, Balakrishna D, N Seetharama (2009) CYP79A1 antisense gene for reducing HCN toxicity in forage sorghum. In: National symposium on “Emerging Trends in Forage Research and Livestock Production” organized by Society for Forage Research during February 16–17, 2009 at Jaisalmer, Rajasthan, India

    Google Scholar 

  • Brauer EK, Shelp BJ (2010) Nitrogen use efficiency: re-consideration of the bioengineering approach. Botany 88:103–109

    Article  CAS  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Sorensen LD, Holm PB (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seeds of transgenic wheat (Triticum aestivum L.). Transgenic Res 12:649–659

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28:527–537

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo MG, Yafuso C, Schmidt CW et al (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci U S A 103:7571–7576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34(6):995–1002

    Article  PubMed  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chai B, Maqbool SB, Hajela RK, Green D, Vargas JM, Warkentin D, Sabzikar R, Sticklen MB (2002) Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci 163:183–193

    Article  CAS  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, Martinez del Pozo A, Messeguer J, Segundo SB (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Peñas G, Gómez J, Campo S, Bortolotti C, Messeguer J, San Segundo B (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406

    Article  CAS  PubMed  Google Scholar 

  • Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci 77:878–881

    Article  CAS  PubMed  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi- Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Duodu KG, Taylor JRN, Belton PS, Hamaker BR (2003) Factors affecting sorghum protein digestibility. J Cereal Sci 38:117–131

    Article  CAS  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067

    Article  Google Scholar 

  • Gillor O, Nigro LM, Riley MA (2005) Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des 11(8):1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK et al (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor GJ, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing the soybean ferritin gene. Transgenic Res 7:173–180

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Green JM, Owen MDK (2011) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem 59(11):5819–5829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grootboom AW (2010) Effect of RNAi down-regulation of three lysine-deficient kafirins on the seed lysine content of sorghum [Sorghum bicolor (L.) Moench]. Unpublished Ph.D. dissertation, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa

    Google Scholar 

  • Hammond BG, Campbell KW, Pilcher CD, Degooyer TA, Robinson AE, McMillen BL, Spangler SM, Riordan SG, Rice LG, Richard JL (2004) Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002. J Agric Food Chem 52:1390–1397

    Article  CAS  PubMed  Google Scholar 

  • Henzell RG, Persley DM, Greber RS, Fletcher DS, Van Slobbe L (1982) Development of grain sorghum lines with resistance to sugarcane mosaic and other sorghum diseases. Plant Dis 6:900–901

    Article  Google Scholar 

  • Ignacimuthu S, Premkumar A (2014) Development of transgenic Sorghum bicolor (L.) Moench resistant to the Chilo partellus (Swinhoe) through Agrobacterium-mediated transformation. Mol Biol Genet Eng 2:1. http://dx.doi.org/10.7243/2053-5767-2-1

  • Jensen SG, Giorda LM (2002) Virus diseases of sorghum and millet in the Americas and Australia. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, pp 403–410

    Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Nataraja K, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt gene. Proc Natl Acad Sci U S A 104:15270–15275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krishnaveni S, Jeoung JM, Muthukrishnan S, Liang GH (2000) Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. J Genet Breed 55:151–158

    Google Scholar 

  • Kumar S, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29:641–653

    CAS  PubMed  Google Scholar 

  • Kumar T, Dweikat I, Sato S, Ge Z, Nersesian N, Chen H, Elthon T, Bean S, Loerger BP, Tilley M, Clemente T (2012) Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol J 10(5):533–544

    Article  CAS  PubMed  Google Scholar 

  • Latha MA, Dasvantha Reddy V, Madhavi Latha A, Venkateswara Rao K (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Latha MA, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang Q, Li X et al (2012) Co-expression of the high molecular weight glutenin sub-unit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum). PLoS One 7(11):e50057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability of the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Mall TK, Dweikat I, Sato SJ, Neresian N, Xu K, Ge Z, Wang D, Elthon T, Clemente T (2011) Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol Biol 75(4–5):467–479

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B sub-units confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oria MP, Hamaker BR, Axtell JD, Huang CP (2000) A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci U S A 97:5065–5070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay W, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190

    Article  CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23(4):482–487

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK (2010) Developing low-HCN producing forage sorghum (Sorghum bicolor [L.]) using anti-sense approach. Ph.D. thesis. Jawaharlal Nehru Technological University, Hyderabad, India

    Google Scholar 

  • Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21:373–375

    Article  CAS  PubMed  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    Article  CAS  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  CAS  PubMed  Google Scholar 

  • Silva LS, Jung R, Zhao Z, Glassman K, Taylor J, Taylor JRN (2011) Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines. J Cereal Sci 54:160–167

    Article  Google Scholar 

  • Stark DM, Beachy RN (1989) Protection against potyvirus infection in transgenic plants: evidence for broad spectrum resistance. Nat Biotechnol 7:1257–1262

    Article  Google Scholar 

  • Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c1[w]. Plant Physiol 139:1313–1322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene regulation and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    Article  CAS  PubMed  Google Scholar 

  • Tristan EL, De Moura FF, Zhao ZY, Albertsen MC, Che P, GlassmanK FMG (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agric Food Chem 61(24):5764–5771

    Article  Google Scholar 

  • Visarada KBRS, Padmaja PG, Saikishore N, Pashupatinath E, Royer M, Seetharama N, Patil JV (2014) Production and evaluation of transgenic sorghum for resistance to stem borer. In Vitro Cell Dev Biol-Plant 50:176–189

    Article  CAS  Google Scholar 

  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Over-expression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    Article  CAS  PubMed  Google Scholar 

  • Xiaotian M, Lijiang W, Chengcai AN, Huayi Y, Zhangliang C (2000) Resistance to rice blast (Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred through Agrobacterium method. Chin Sci Bull 45:1774–1778

    Article  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci U S A 101:7833–7838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoder JI, Scholes JD (2010) Host plant resistance to parasitic weeds: recent progress and bottlenecks. Curr Opin Plant Biol 13(4):478–484

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Kornegay ET, Radcliffe JS, Wilson JH, Veit HP (2000) Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J Anim Sci 78:2868–2878

    CAS  PubMed  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Venkatesh Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bhat, B.V., Balakrishna, D., Madhu, P., Patil, J.V. (2015). Genetic Engineering for Novel Traits. In: Madhusudhana, R., Rajendrakumar, P., Patil, J. (eds) Sorghum Molecular Breeding. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2422-8_10

Download citation

Publish with us

Policies and ethics