Skip to main content

Abstract

The recent global concerns associated with the use of antibiotics and other growth-promoting stimulants in the animal feeds have created a window of opportunities and responsibilities for livestock nutritionists to search for alternative safer feed additives, such as direct-fed microbials based on viable naturally occurring beneficial microorganisms. In the last decade, nutritionists and microbiologists have elucidated comprehensive details related to the normal intestinal microbiota of mammals and also the benefits it provides to the host. In this milieu, numerous species and strains of probiotic bacteria, yeast, and fungal cultures have been isolated and experimented, and a number of these microbes have been found to confer numerous benefits to the host animal when added to a diet. Some of the benefits associated with these microbial supplements are stimulation of beneficial microbial growth in the rumen, stabilization of the rumen pH, improved ruminal fermentation and end-product production, increased nutrient flow and digestibility, alleviated stress, enhanced immune response, reduced pathogens, reduced acidosis, improved weight gain, increased milk yield, etc. Although the research on the use of microbes as animal feed additives has been intensive as well as extensive in the last couple of decades, more investigations, nevertheless, are still needed to ascertain the species- and strain-specific effects associated with these microorganisms, to explicate the molecular mechanisms involved in the animal responses, and also to search for more efficient and steady formulations for maximum and consistent livestock productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFU:

Colony-forming units

DFM:

Direct-fed microbial

FAO:

Food and Agriculture Organization of the United Nations

FDA:

US Food and Drug Administration

GI:

Gastrointestinal

GIT:

Gastrointestinal tract

MFA:

Microbial feed additives

WHO:

World Health Organization

References

  • Abe F, Ishibashi N, Shimamura S (1995) Effect of administration of Bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Diary Sci 78(912):2838–2846

    Article  CAS  Google Scholar 

  • Adams MC, Luo J, Rayward D et al (2008) Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim Feed Sci Technol 145:41–52

    Article  Google Scholar 

  • Agarwal N, Kamra DN, Chaudhary LC et al (2000) Selection of Saccharomyces cerevisiae strains for use as a microbial feed additive. Lett Appl Microbiol 31:270–273

    Article  CAS  PubMed  Google Scholar 

  • Akin DE, Borneman WS (1990) Role of rumen fungi in fiber degradation. J Dairy Sci 73:3023–3032

    Article  CAS  PubMed  Google Scholar 

  • Akin DE, Rigsby LL, Lyon CE et al (1990) Relationship of tissue digestion to textural strength in Bermuda grass and alfalfa stems. Crop Sci 30:990–993

    Article  Google Scholar 

  • Aleman MM, Stein DR, Allen DT et al (2007) Effect of feeding two levels of Propionibacteria to dairy cows on plasma hormones and metabolites. J Dairy Res 74:146–153

    Article  CAS  PubMed  Google Scholar 

  • Bauchop T, Mountfort DO (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens. Appl Environ Microbiol 42:1103–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Block E, Nocek JE, Kautz WP et al (2000) Direct fed microbial and anionic salt supplementation to dairy cows fed 21 days pre- to 70 days post-partum. J Anim Sci 78(1):304

    Google Scholar 

  • Borneman WS, Akin DE (1990) Lignocellulose degradation by rumen fungi and bacteria: ultrastructure and cell wall degrading enzymes. In: Akin DE, Ljungdahl LG, Wilson JR, Harris PJ (eds) Microbial and plant opportunities to improve lignocellulose utilization by ruminants. Elsevier, New York, pp 325–339

    Google Scholar 

  • Brossard L, Chaucheyras-Durand F, Michalet-Doreau B et al (2006) Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep: new type of interaction. Anim Sci 82:829–836

    Article  CAS  Google Scholar 

  • Bunce TJ, Howard MD, Kerley MS et al (1995) Protective effect of fructooligosaccharides in prevention of mortality and morbidity from infectious E. coli K88. J Anim Sci 73(1):69

    Google Scholar 

  • Carter HE, Phillips GE (1944) The nutritive value of yeast proteins. Fed Proc 3:123–128

    CAS  Google Scholar 

  • Chaucheyras F, Fonty G, Bertin G et al (1995) In-vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol 61:3466–3467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaucheyras F, Fonty G, Bertin G et al (1996) Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can J Microbiol 42:927–933

    Article  CAS  PubMed  Google Scholar 

  • Chaucheyras-Durand F, Fonty G (2002) Influence of a probiotic yeast (Saccharomyces cerevisiae CNCM I-1077) on microbial colonization and fermentation in the rumen of newborn lambs. Microb Ecol Health Dis 14:30–36

    Article  Google Scholar 

  • Chaucheyras-Durand F, Madic J, Doudin F et al (2006) Biotic and abiotic factors influencing in vitro growth of E. coli O157:H7 in ruminant digestive contents. Appl Environ Microbiol 72:4136–4142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaucheyras-Durand F, Walker ND, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145:5–26

    Article  CAS  Google Scholar 

  • Cota MA, Whitefield TR (1998) Xylooligosaccharides utilization by ruminal anaerobic bacterium Selenomonas ruminantium. Curr Microbiol 36:183–189

    Article  Google Scholar 

  • Cruywagen CW, Jordan I, Venter L (1995) Effect of Lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J Dairy Sci 79:483–486

    Article  Google Scholar 

  • Dayanand TL, Nagpal R, Puniya AK et al (2007) In-vitro degradation of urea-NH3 treated wheat straw using anaerobic ruminal fungi. J Anim Feed Sci 16:484–489

    Google Scholar 

  • Dey A, Sehgal JP, Puniya AK et al (2004) Influence of an anaerobic fungal culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves. Asian-Aust J Anim Sci 17:733–884

    Article  Google Scholar 

  • Eckles CH, Williams VM (1925) Yeast as a supplementary feed for lactating cows. J Dairy Sci 8:89–93

    Article  Google Scholar 

  • Elam NA, Gleghorn JF, Rivera JD et al (2003) Effects of live culture of Lactobacillus acidophilus (strains NP45 and NP51) and Propionibacterium freudenreichii on performance, carcass and intestinal characteristics, and Escherichia coli strain O157 shedding of finishing beef steers. J Anim Sci 81:2686–2698

    CAS  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2002) Guidelines for the evaluation of probiotics in food. ftp://ftp.fao.org/es/esn/food/wgreport2.pdf

  • FAO/WHO (2009) Guidelines for the evaluation of probiotics in foods. Available at: ftp://ftp.fao.org/es/esn/food/wgreport2.pdf

  • FDA (1995) Direct-fed microbial products. Compliancy Policy Guide, Silver Spring

    Google Scholar 

  • FDA (2003) Office of Regulatory Affairs: compliance policy guides. Sec. 689.100. Direct-Fed Microbial Products (CPG 7126:41). Available at: http://www.fda.gov/ora/compliance_ref/cpg/cpgvet/cpg689-100.html

  • Fox SM (1988) Probiotics intestinal inoculants for production animals. Vet Med 83:806–830

    Google Scholar 

  • Francisco CC, Chamberlain CS, Waldner DN et al (2002) Propionibacteria fed to dairy cows: effects on energy balance, plasma metabolites and hormones, and reproduction. J Dairy Sci 85:1738–1751

    Article  CAS  PubMed  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  PubMed  Google Scholar 

  • Fuller R (2004) What is a probiotic? Biologist 51:232

    Google Scholar 

  • Galvao KN, Santos JE, Coscioni A et al (2005) Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod Nutr Develop 45:427–440

    Article  Google Scholar 

  • Ghorbani GR, Morgavi DP, Beauchemin KA et al (2002) Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J Anim Sci 80:1977–1985

    CAS  PubMed  Google Scholar 

  • Gomez-Basauri J, de Ondarza MB, Siciliano-Jones J (2001) Intake and milk production of dairy cows fed lactic acid bacteria and mannanoligosaccharide. J Dairy Sci 84(1):283

    Google Scholar 

  • Gordon GLR (1990) Selection of anaerobic fungi for better fibre degradation in the rumen. In: Akin DE, Ljungdahl LG, Wilson JR, Harris PJ (eds) Microbial and plant opportunities to improve lignocellulose utilization by ruminants. Elsevier, New York, pp 301–309

    Google Scholar 

  • Gordon GLR, Phillips MW (1993) Removal of anaerobic fungi from the rumen of sheep by chemical treatment and the effect on feed consumption and in vivo fibre digestion. Lett Appl Microbiol 17:220–223

    Article  Google Scholar 

  • Gordon GLR, Phillips MW (1998) The role of anaerobic gut fungi in ruminants. Nutr Res Rev 11:1–36

    Article  Google Scholar 

  • Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39:237–238

    Article  CAS  PubMed  Google Scholar 

  • Guedes CM, Gonçalves D, Rodrigues MAM et al (2008) Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Anim Feed Sci Technol 145:27–40

    Article  CAS  Google Scholar 

  • Higginbotham GE, Bath DL (1993) Evaluation of Lactobacillus fermentation cultures in calf feeding systems. J Dairy Sci 76:615–620

    Article  Google Scholar 

  • Hill C, Guarner F, Reid G et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. doi:10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  • Hong HA, Hong Duc L, Cutting S (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    Article  CAS  PubMed  Google Scholar 

  • Hungate ER (1988) The ruminant and the rumen. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Sciences, London, pp 1–19

    Google Scholar 

  • Isolauri E, Rautava S, Kalliomaki M (2002) Role of probiotics in food hypersensitivity. Curr Opin Allergy Clin Immunol 2:263–271

    Article  PubMed  Google Scholar 

  • Jaquette RD, Dennis RJ, Coalson JA et al (1988) Effect of feeding viable Lactobacillus acidophilus (BT1386) on performance of lactating dairy cows. J Dairy Sci 71(1):219

    Google Scholar 

  • Jouany JP (2006) Optimizing rumen functions in the close-up transition period and early lactation to dry matter intake and energy balance in cows. Anim Reprod Sci 96:250–264

    Article  CAS  PubMed  Google Scholar 

  • Kaufhold JN, Hammon HM, Blum JW (2000) Fructooligosaccharides supplementation effects on metabolic, endocrine and hematological traits in veal calves. J Vet Med A 47:17–29

    Article  CAS  Google Scholar 

  • Klieve A, Joblin KJ (2007) Comparison in hydrogen utilization of ruminal and marsupial reductive acetogens. In: 5-year science progress report 2002–2007. New Zealand Pastoral Greenhouse Gas Research Consortium, Wellington, pp 34–35

    Google Scholar 

  • Klieve AV, Hennessy D, Ouwerkerk D et al (2003) Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol 95:621–630

    Article  CAS  PubMed  Google Scholar 

  • Kmet V, Flint HJ, Wallace RJ (1993) Probiotics and manipulation of rumen development and function. Arch Anim Nutr 44:1–10

    CAS  Google Scholar 

  • Krehbiel CR, Rust SR, Zhang G et al (2003) Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J Anim Sci 81:E120–E132

    Google Scholar 

  • Lee SS, Choi CK, Ahn BH et al (2004) In vitro stimulation of rumen microbial fermentation by a rumen anaerobic fungal culture. Anim Feed Sci Technol 115:215–226

    Article  CAS  Google Scholar 

  • Lesmeister KE, Heinrichs AJ, Gabler MT (2004) Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J Dairy Sci 87:1832–1839

    Article  CAS  PubMed  Google Scholar 

  • Lilly DM, Stillwell RH (1965) Probiotics: growth promoting factors produced by microorganisms. Science 147:747–748

    Article  CAS  PubMed  Google Scholar 

  • Linn J, Raeth-Knight M (2006) Yeast in dairy cattle diets. 2006 4-state dairy nutrition and management conference, pp 85–90. Ames, IA, Iowa State University, MWPS

    Google Scholar 

  • Mackie RI, Gilchrist FMC, Heath S (1984) In vivo study of ruminal microorganisms influencing lactate turnover and its contribution to volatile fatty acid production. J Agric Sci 103:37

    Article  CAS  Google Scholar 

  • Magalhaes VJA, Susca F, Lima FS et al (2008) Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. J Dairy Sci 91:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • Manikumar B, Puniya AK, Singh K (2002) Influence of ruminal fungi on degradation of wheat straw in vitro. Indian J Microbiol 42:133–136

    Google Scholar 

  • Manikumar B, Puniya AK, Singh K (2003) Effect of ruminal fungi on in vitro degradation of rice straw. Indian J Anim Sci 73:312–314

    Google Scholar 

  • Marden JP, Julien C, Monteils V et al (2008) How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? J Dairy Sci 91:3528–3535

    Article  CAS  PubMed  Google Scholar 

  • Martin SA, Nisbet DJ (1990) Effects of Aspergillus oryzae extract on fermentation of amino acids, bermuda grass and starch by mixed ruminal microorganisms in vitro. J Anim Sci 68:2142–2149

    CAS  PubMed  Google Scholar 

  • Martin C, Morgavi D, Doreau M et al (2006) Comment réduire la production de méthane chez les ruminants? Forages 187:283–300

    Google Scholar 

  • Mcallister TA, Cheng KJ (1996) Microbial strategies in the ruminal digestion of cereal grain. Anim Feed Sci Technol 62:29–36

    Article  CAS  Google Scholar 

  • Metchnikoff E (1908) The prolongation of life, 1st edn. G.P. Putnam’s Sons, New York

    Google Scholar 

  • Mosoni P, Chaucheyras-Durand F, Bera-Maillet C et al (2007) Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J Appl Microbiol 103:2676–2685

    Article  CAS  PubMed  Google Scholar 

  • Mul AJ (1997) Application of oligofructose in animal feeds. In: Proceedings of international symposium non-digestible oligosaccharides: healthy food for colon? Wageningen, p 106

    Google Scholar 

  • Mwenya B, Santoso B, Sar C et al (2004) Effects of including beta 1,4- galactooligosaccharides, lactic acid bacteria or yeasts culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Anim Feed Sci Technol 115:313–326

    Article  CAS  Google Scholar 

  • Mwenya B, Sar C, Santoso B et al (2005) Comparing the effects of beta 1,4-galactooligosaccharides, and L-cysteine to monensin on energy and nitrogen utilization in steers fed a very high concentrate diets. Anim Feed Sci Technol 118:19–30

    Article  CAS  Google Scholar 

  • Nagpal R, Puniya AK, Griffith G et al (2008) Anaerobic rumen fungi: potential and applications. In: Khachatourians G, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms: an international multi-volume annual review series, vol II. Academic World International, Bhopal, pp 375–393

    Google Scholar 

  • Nagpal R, Puniya AK, Sehgal JP et al (2011) In-vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores. Mycoscience 52:31–38

    Article  CAS  Google Scholar 

  • Newbold CJ, Rode LM (2006) Dietary additives to control methanogenesis in the rumen. Int Congr Ser 1293:138–147

    Article  CAS  Google Scholar 

  • Newbold CJ, Wallace RJ, McIntosh FM (1996) Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Brit J Nutr 76:249–261

    Article  CAS  PubMed  Google Scholar 

  • Nocek JE, Kautz WP (2006) Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J Dairy Sci 89:260–266

    Article  CAS  PubMed  Google Scholar 

  • Nocek JE, Kautz WP, Leedle JA et al (2002) Ruminal supplementation of direct-fed microbials on diurnal pH variation and in situ digestion in dairy cattle. J Dairy Sci 85:429–433

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG, Joblin KN (1988) The rumen anaerobic fungi. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Science, London, pp 129–150

    Google Scholar 

  • Parker RB (1974) Probiotics: the other half of the antibiotic story. Anim Nutr Health 29:4–8

    Google Scholar 

  • Paul SS, Kamra DN, Sastry VRB et al (2004) Effect of administration of an anaerobic gut fungus isolated from wild blue bull to buffaloes on in vivo ruminal fermentation and digestion of nutrients. Anim Feed Sci Technol 115:143–157

    Article  Google Scholar 

  • Quigley JD, Wallis LB, Dowlen HH et al (1992) Sodium bicarbonate and yeast culture effects on ruminal fermentation, growth, and intake in dairy calves. J Dairy Sci 75:3531–3538

    Article  PubMed  Google Scholar 

  • Raeth-Knight ML, Linn JG, Jung HG (2007) Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of Holstein dairy cows. J Dairy Sci 90:1802–1809

    Article  CAS  PubMed  Google Scholar 

  • Roselli M, Finamore A, Britti M et al (2005) Alternatives to in-feed antibiotics in pig production: evaluation of probiotics, zinc oxide or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim Res 54:203–218

    Article  CAS  Google Scholar 

  • Rossi F, Luccia AD, Vincenti D et al (2004) Effects of peptidic fractions from Saccharomyces cerevisiae culture on growth and metabolism of the ruminal bacteria Megasphaera elsdenii. Anim Res 53:177–186

    Article  CAS  Google Scholar 

  • Rossi C, Sgoifo A, Dell-Orto V et al (2006) Effects of live yeast in beef cattle studied. Feedstuffs 16:11

    Google Scholar 

  • Ruppert LD, Gene CM, Hutjens MF (1998) Feeding of probiotics to calves. Illini Dairy Net 06

    Google Scholar 

  • Salminen S (1996) Uniqueness of probiotic strains. Int Dairy Feed Sand Nutr Newsl 5:16–18

    Google Scholar 

  • Samanta AK, Walli TK, Singh KK (2001) Role of different groups of microbes on fibre utilization. Ind J Anim Sci 71:497–498

    Google Scholar 

  • Samanta AK, Senani S, Kolte AP et al (2012) Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod Process 90:466–474

    Article  CAS  Google Scholar 

  • Santoso B, Kume S, Nonaka K et al (2003) Influence of beta galactooligosaccharide supplementation on nitrogen utilization, rumen fermentation, and microbial nitrogen supply in dairy cows fed silage. Asian-Aust J Anim Sci 26:1137–1142

    Article  Google Scholar 

  • Saxena S, Sehgal JP, Puniya AK et al (2010) Effect of administration of rumen fungi on production performance of lactating buffaloes. Benef Microbes 1(2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Schrezenmeir J, de Vrese M (2001) Probiotics, prebiotics, and synbiotics: approaching a definition. Am J Clin Nutr 73(2):361S–364S

    CAS  PubMed  Google Scholar 

  • Seo JK, Seon-Woo K, Kim MH et al (2010) Direct-fed microbials for ruminant animals. Asian-Aust J Anim Sci 23:1657–1667

    Article  Google Scholar 

  • Sniffen CJ, Chaucheyras-Durand F, De Ondarza MB et al (2004) Predicting the impact of a live yeast strain on rumen kinetics and ration formulation. In: Proceedings of the 19th annual southwest nutrition and management conference, Tempe, pp 53–59, 24–25 Feb 2004

    Google Scholar 

  • Sretenovic L, Petrovic MP, Aleksic S et al (2008) Influence of yeast, probiotic and enzymes rations on dairy cows. Biotechnol Anim Husb 24:33–43

    Article  Google Scholar 

  • Stein DR, Allen DT, Perry EB et al (2006) Effects of feeding Propionibacteria to dairy cows on milk yield, milk components and reproduction. J Dairy Sci 89:111–125

    Article  CAS  PubMed  Google Scholar 

  • Stella AV, Paratte R, Valnegri L et al (2007) Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and fecal flora in early lactating dairy goats. Small Rum Res 67:7–13

    Article  Google Scholar 

  • Stephens TP, Loneragan GH, Karunasena E et al (2007) Reduction of Escherichia coli O157 and Salmonella in feces and on hides of feedlot cattle using various doses of a direct-fed microbial. J Food Prot 70:1346–1349

    CAS  PubMed  Google Scholar 

  • Tabe ES, Oloya J, Doetkott DK et al (2008) Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. J Food Prot 71:539–544

    PubMed  Google Scholar 

  • Taras D, Vahjen W, Macha M et al (2006) Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J Anim Sci 84:608–617

    CAS  PubMed  Google Scholar 

  • Thareja A, Puniya AK, Goel G et al (2006) In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch Anim Nutr 60:412–417

    Article  CAS  PubMed  Google Scholar 

  • Theodorou MK, Longland AC, Dhanoa MS et al (1989) Growth of Neocallimastix sp strain R1 on Italian ryegrass hay – removal of neutral sugars from plant-cell walls. Appl Environ Microbiol 55:1363–1367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timmerman HM, Mulder L, Everts H et al (2005) Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci 88:2154–2165

    Article  CAS  PubMed  Google Scholar 

  • Todd RK (2001) The probiotic concept. In: Michael PD, Larry RB, Thomas JM (eds) Food microbiology, fundamental and frontiers, vol 2. American Society of Microbiology (ASM) Press, Washington, DC, pp 128–139

    Google Scholar 

  • Tripathi VK, Sehgal JP, Puniya AK et al (2007) Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fibre utilization in buffalo calves. Arch Anim Nutr 61:416–423

    Article  CAS  PubMed  Google Scholar 

  • Van Eys J, den Hartog L (2003) Separation of health performance roles of probiotics may lead to understanding of mode of action. Feedstuffs 78:24–29

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Comstock, Ithaca

    Google Scholar 

  • Verdonk JMAJ, Van Leeuwen P (2004) The application of inulin type fructans in diets for veal calves and broilers. In: Inulin and oligofructose feed good factors for health and wellbeing. 4th ORAFTI research conference, Paris

    Google Scholar 

  • Walker ND (2007) DFMs: fact, fiction, and future (part 1). Feedstuffs 11 Jun: 12

    Google Scholar 

  • Wallace RJ, Newbold CJ (1992) Probiotics for ruminants. In: Fuller R (ed) Probiotics: the scientific basis. Chapman and Hall, London, pp 317–353

    Chapter  Google Scholar 

  • Weimer PJ (1998) Manipulating ruminal fermentation: a microbial ecological perspective. J Anim Sci 76:3114–3122

    CAS  PubMed  Google Scholar 

  • Windschitl PM, Randall KM, Brainard DJ (1991) Growth performance of Holstein dairy calves supplemented with a probiotics. Agricultural and Forestry Experiment Station School of Agriculture and Land Resources Management, Apr: 22

    Google Scholar 

  • Yoon IK, Stern MD (1995) Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: a review. Asian-Aust J Anim Sci 8:533–555

    Article  Google Scholar 

Download references

Conflict of Interest’s Statement

The first author is postdoc fellow at Juntendo Laboratory. This manuscript, however, does not represent any scientific or monetary viewpoint of Juntendo. The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Nagpal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Nagpal, R., Shrivastava, B., Kumar, N., Dhewa, T., Sahay, H. (2015). Microbial Feed Additives. In: Puniya, A., Singh, R., Kamra, D. (eds) Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2401-3_12

Download citation

Publish with us

Policies and ethics