Skip to main content

A Literature Review on CO2 Laser Welding

  • Chapter
  • First Online:
Book cover Lasers Based Manufacturing

Abstract

Laser welding is a sophisticated, high accuracy and high speed welding process. Laser welding is a process of joining components where laser beam used as a heat source. In this present study a literature review on welding by laser as a heat source has been addressed. In the present review, emphasis has been given especially on the laser welding numerical and experimental temperature field analysis, thermo-mechanical analysis. The time frame of the review is 1992–2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrazaka, K., Salem, W. B., Mhiri, H., Lepalec, G., & Autric, M. (2008). Modelling of CO2 laser welding of magnesium alloys. Optics and Laser Technology, 40, 581–588.

    Article  Google Scholar 

  • Arif, A. F. M., Al-Omari, A. S., Yilbas, B. S., & Al-Nassar, Y. N. (2011). Thermal stress analysis of spiral laser welded tube. Journal of Materials Processing Technology, 211(4), 675–687.

    Article  Google Scholar 

  • Belhadj, A., Bessrour, J., Masse, J.-E., Bouhafs, M., & Barallier, L. (2010). Finite element simulation of Mg alloys laser beam welding. Journal of Material Processing Technology, 210, 1131–1137.

    Article  Google Scholar 

  • Boutarek, N., Azzougui, B., Saidi, D., & Neggache, M. (2009). Microstructure change in the interface of CO2 laser welded zirconium alloys. Physics Procedia, 2, 1159–1165.

    Article  Google Scholar 

  • Casalino, G. (2007). Statistical analysis of MIG-laser CO2 hybrid welding of Al–Mg alloy. Materials Processing Technology, 191, 106–110.

    Article  Google Scholar 

  • Casalino, G., & Ghorbel, E. (2008). Numerical model of CO2 laser welding of thermoplastic polymers. Journal of Materials Processing Technology, 207, 63–71.

    Article  Google Scholar 

  • Chen, W., Ackerson, P., & Molian, P. (2009). CO2 laser welding of galvanized steel sheets using vent holes. Materials and Design, 3, 245–251.

    Article  Google Scholar 

  • Cheng, Y., Jin, X., Li, S., & Zeng, L. (2012). Fresnel absorption and inverse bremsstrahlung absorption in an actual 3D keyhole during deep penetration CO2 laser welding of aluminum 6016. Optics and Laser Technology, 44, 1426–1436.

    Article  Google Scholar 

  • Cho, W.-I., Na, S.-J., Cho, M.-H., & Lee, J.-S. (2010). Numerical study of alloying element distribution in CO2 laser—GMA hybrid welding. Computational Materials Science, 49, 792–800.

    Article  Google Scholar 

  • Deng, D., & Kiyoshima, S. (2010). Numerical simulation of residual stresses induced by laser beam welding in SUS316 stainless steel pipe with considering initial residual stress influences. Nuclear Energy and Design, 240(4), 688–696.

    Article  Google Scholar 

  • Duggan, G., Tong, M., & Browne, D. J. (2011). An integrated meso-scale numerical model of melting and solidification in laser welding. Materials Science and Engineering, 27, 012–077.

    Google Scholar 

  • El-Batahgy, A.-M. (1997). Effect of laser welding parameters on fusion welding zone and shape and solidification structure of austenitic stainless steels. Materials Letters, 32, 155–163.

    Article  Google Scholar 

  • Fortunato, A., Ascari, A., Orazi, L., Cuccolini, G., Campana, G., & Tani, G. (2012). Numerical simulation of nano-second pulsed laser welding of eutectoid steel components. Optics and Laser Technology, 44, 1999–2003.

    Article  Google Scholar 

  • Gao, M., Zeng, X., & Hu, Q. (2007). Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. Journal of Materials Processing Technology, 184, 177–183.

    Article  Google Scholar 

  • Geoffray, I., Bourdenet, R., & Theobald, M. (2011). Laser micro-welding applied to target manufacturing. Physics Procedia, 12, 363–369.

    Article  Google Scholar 

  • GuoMing, H., Jian, Z., & JianQuang, L. (2007). Dynamic simulation of the temperature field of stainless steel laser welding. Materials and Design, 28, 240–245.

    Article  Google Scholar 

  • Hamatani, H., Miyazaki, Y., & Ohara, M. (2005). Effect of applying electrical potential to a CO2 laser welding of different thickness plates. Science and Technology of Advanced Materials, 6, 712–719.

    Article  Google Scholar 

  • Hess, A., Schuster, R., Heider, A., Weber, R., & Graf, T. (2011). Continuous wave laser welding of copper with combined beams at wavelengths of 1030 nm and of 515 nm. Physics Procedia, 12, 88–94.

    Article  Google Scholar 

  • Honga, J. K., Parkb, J. H., Parka, N. K., Eomc, I. S., Kimc, M. B., & Kangc, C. Y. (2008). Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. Materials Processing Technology, 201, 515–520.

    Article  Google Scholar 

  • Kawaguchi, I., Tsukamoto, S., Arakane, G., & Honda, H. (2006). Characteristics of high-power CO2 laser welding and porosity suppression mechanism with nitrogen shielding. Study of high-power laser welding phenomena. Welding International, 20(2), 100–105.

    Article  Google Scholar 

  • Kim, C. H., Ahn, Y. N., & Kim, J. H. (2011). CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets. Transactions of the Nonferrous Metals Society of China, 21, 47–53.

    Article  MathSciNet  Google Scholar 

  • Kurosaki, Y., Satoh, K., Koyanagi, H., & Miyahara, H. (2009). CO2 laser welding of the PFA disk top on a circular tube assisted by a transparent solid heat sink. 67th Annual Technical Conference of the Society of Plastics Engineers, 3, 1283–1288.

    Google Scholar 

  • Lakshminarayanan, A. K., & Balasubramaniam, V. (2012). Evaluation of micro-structure and mechanical properties of laser beam welded 409M grade ferritic stainless steel. Journal of Iron and Steel Research, 19(1), 72–78.

    Article  Google Scholar 

  • Li, G., Cai, Y., & Wu, Y. (2009). Stability information in plasma image of high-power CO2 laser welding. Optics and Lasers in Engineering, 47, 990–994.

    Article  Google Scholar 

  • Liu, J., Ma, L., Xie, Y., & Zhang, Y. (2006). Primary research on image of plasma in CO2 laser welding with high-speed photography, SPIE, 61, 5016-1-5.

    Google Scholar 

  • Liu, S., Zhang, H., Hu, J., & Shi, Y. (2013). Microstructure of laser-MAG hybrid welds of sintered P/M steel. JMEPEG, 22, 251–257.

    Article  Google Scholar 

  • Mert, T. (2009). Finite element analysis of effect of weld toe radius and root gap on fatigue life of T-fillet welded joint. Conference of the International Journal of Arts and Sciences, 1, 119–127.

    Google Scholar 

  • Olabi, A. G., Alsinani, F. O., Alabdulkarim, A., Ruggiero, A., Tricarico, L., & Benyounis, K. Y. (2013). Optimizing the CO2 laser welding process for dissimilar materials. Optics and Lasers in Engineering, 51, 832–839.

    Article  Google Scholar 

  • Olabi, A. G., Casalino, G., Benyounis, K. Y., & Hashmi, M. S. J. (2006). An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding. Advances in Engineering Software, 37, 643–648.

    Article  Google Scholar 

  • Park, H., & Rhee, S. (1999). Analysis of mechanism of plasma and spatter in CO2 laser welding of galvanized steel. Optics and Laser Technology, 31, 119–126.

    Article  Google Scholar 

  • Perez-Medina, G. Y., López, H. F., Zambrano, P., & Reyes-Valdés, F. A. (2013). Microstructural effects on the mechanical integrity of a TRIP-800 steel welded by laser-CO2 process. ASM International JMEPEG, 22, 607–612.

    Article  Google Scholar 

  • Piekarska, W., & Kubiak, M. (2011). Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. International Journal of Heat and Mass Transfer, 54, 4966–4974.

    Article  MATH  Google Scholar 

  • Ruggiero, A., Tricarico, L., Olabi, A. G., & Benyounis, K. Y. (2011). Weld-bead profile and costs optimization of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Optics and Laser Technology, 43, 82–90.

    Article  Google Scholar 

  • Sakagawa, T., Nakashiba, S-i, & Hiejima, H. (2011). Laser micro welding system and its application to seam welding of rechargeable battery. Physics Procedia, 12, 6–10.

    Article  Google Scholar 

  • Sathiya, P., & AbdulJaleel, M. Y. (2010). Measurement of the bead profile and micro-structural characterization of a CO2 laser welded AISI 904L super-austenitic stainless steel. Optics and Laser Technology, 42(6), 960–968.

    Article  Google Scholar 

  • Seto, N., Katayama, S., & Matsunawa, A. (2002). Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel. Welding International, 16(6), 451–460.

    Article  Google Scholar 

  • Shanmugarajann, B., & Padmanabham, G. (2012). Fusion welding studies using laser on Ti–SS dissimilar combination. Optics and Lasers in Engineering, 50, 1621–1627.

    Article  Google Scholar 

  • Sibillano, T., Ancona, A., Berardi, V., Schingaro, E., Basilea, G., & Lugara, P. M. (2006). A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation. Optics and Lasers in Engineering, 44, 1039–1051.

    Article  Google Scholar 

  • Smith, D. J., Bouchard, P. J., & George, D. (2000). Measurement and prediction of residual stresses in thick-sectioned welds. Journal of Strain Analysis, 35, 287–305.

    Article  Google Scholar 

  • Tse, H. C., Man, H. C., & Yue, T. M. (1999a). Effect of magnetic field on plasma control during CO2 laser welding. Optics and Laser Technology, 31, 363–368.

    Article  Google Scholar 

  • Tse, H. C., Man, H. C., & Yue, T. M. (1999b). Effect of electric and magnetic fields on plasma control during CO2 laser welding. Optics and Lasers in Engineering, 32, 55–63.

    Article  Google Scholar 

  • Tse, H. C., Man, H. C., & Yue, T. M. (2000). Effect of electric field on plasma control during CO2 laser welding. Optics and Lasers in Engineering, 33, 181–189.

    Article  Google Scholar 

  • Tu, J. F., Inoue, T., & Miyamoto, I. (2003). Quantitative characterization of keyhole absorption mechanisms in 20 kW-class CO2 laser welding processes. Journal of Physics. D: Applied Physics, 36, 192–203.

    Article  Google Scholar 

  • VedantAkgun, O., Urgen, Mustafa, & FuatCakir, Ali. (1995). The effect of heat treatment on corrosion behavior of laser surface melted 304L stainless steel. Materials Science and Engineering, A203, 324–331.

    Google Scholar 

  • Wang, R., Lei, Y., & Shi, Y. (2011a). Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet. Optics and Laser Technology, 43, 870–873.

    Article  Google Scholar 

  • Wang, C.-M., Meng, X.-X., Huang, W., Hu, X.-Y., & Duan, A.-Q. (2011b). Role of side assisting gas on plasma and energy transmission during CO2 laser welding. Journal of Materials Processing Technology, 211, 668–674.

    Article  Google Scholar 

  • Yu, S., Fan, D., & Dong, B. (2011). Laser beam welding of dissimilar metals of aluminum alloy and galvanized steel sheet. In Second International Conference on Mechanic Automation and Control Engineering (pp. 5030–5032).

    Google Scholar 

  • Zhu, J., Li, L., & Liu, Z. (2005). CO2 and diode laser welding of AZ31 magnesium alloy. Applied Surface Science, 247, 300–306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Bhadra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bhadra, R., Biswas, P., Ravi Sankar, M. (2015). A Literature Review on CO2 Laser Welding. In: Joshi, S., Dixit, U. (eds) Lasers Based Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2352-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2352-8_19

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2351-1

  • Online ISBN: 978-81-322-2352-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics