Skip to main content

Energy Sustainability by Biomass

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

With rapidly growing energy demand and concerns over energy security and environment, researchers worldwide are exploring hard to deploy renewable energy sources. Development of economical biofuel at sufficiently large scale may provide major breakthrough in this direction, with strong impact on sustainability. More importantly, environmental benefits may also be achieved by the utilization of renewable biomass resources, which could help the biosphere in longer time. This chapter reviews the availability and bioenergy potentials of the current biomass feedstock. These include the following: (i) food crops such as sugarcane, corn and vegetable oils, classified as the first-generation feedstocks, and environmental and socio-economic barriers limiting its use; (ii) second-generation feedstocks involving lignocellulosic biomass derived from agricultural and forestry residues and municipal waste followed by constraints for their full commercial deployment. Key technical challenges and opportunities of the lignocellulosic biomass-to-bioenergy production are discussed in comparison with the first-generation technologies. (iii) The potential of the emerging third-generation biofuel from algal biomass is also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelaziz A, Leite G, Hallenbeck P (2013) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34:1807–1836

    Google Scholar 

  • Alternative fuels data center (2013) Alternative fuel price report, U.S. Department of Energy

    Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and prespectives in using microalgae to produce biodiesel, Appl Energy 88(10):3402–3410

    Google Scholar 

  •  Appell HR, Fu YC, Friedman S, Yavorsky PM, Wender I (1971) Technical report of investigation 7560. US Bureau of Mines, Pittsburgh

    Google Scholar 

  • Balat M (2006) Sustainable transportation fuels from biomass materials. Energy Educ Sci Technol 17:83–103

    Google Scholar 

  • Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87:1815–1835

    Article  Google Scholar 

  • Cadoux S, Riche AB, Yates NE, Machet JM (2012) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenergy 38:14–22

    Article  Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2010) Second-generation biofuels: economics and policies. The World Bank, Washington, DC 

    Google Scholar 

  • Chang NB, Chang YH, Chen WC (1997) Evaluation of heat value and its prediction for refuse-derived fuel. Sci Total Environ 197:139–148

    Google Scholar 

  • Choi HL, Sudiarto SIA, Renggaman A (2014) Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 116:772–780

    Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451

    Article  Google Scholar 

  • Christopher LP, Hemanathan K, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520

    Article  Google Scholar 

  • Clark JH (2007) Green chemistry for the second generation biorefinery-sustainable chemical manufacturing based on biomass. J Chem Technol Biotechnol 82:603–609

    Article  Google Scholar 

  • Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9

    Article  Google Scholar 

  • Day JG, Slocombe SP, Stanley MS (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251

    Article  Google Scholar 

  • Demirbas A (2004) Current technologies for the thermo-conversion of biomass into fuels and chemicals. Energy Sour Part A: Recovery Utilization Environ Eff 26:715–730

    Article  Google Scholar 

  • Deswarte FEI, Clark JH, Hardy JJE, Rose PM (2008) The fractionation of valuable wax products from wheat straw using CO2. Green Chem 8:39–42

    Article  Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S-Y (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857

    Article  Google Scholar 

  • FAOSTAT (2011), Rome

    Google Scholar 

  • Fischer G, Hizsnyik E, Prierlder S, Shah M, van Velthuizen H (2009) Biofuels and food security. International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  • Gasparatos A, Stromberg P, Takeuchi K (2013) Sustainability impacts of first-generation biofuels. Anim Front 3:12–26

    Article  Google Scholar 

  • Ginzburg B (1993) Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy 3:249–252

    Article  Google Scholar 

  • Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991

    Article  Google Scholar 

  • Gupta VK, Potumarthi R, O’Donovan A, Kubicek CP, Sharma GD, Tuohy MG (2014) bioenergy research: an overview on technological developments and bioresources—Chapter 2. In: Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F (eds) Bioenergy research: advances and applications. Elsevier, Amsterdam, pp 23–47

    Chapter  Google Scholar 

  • Hauk S, Knoke T, Wittkopf S (2014) Economic evaluation of short rotation coppice systems for energy from biomass—a review. Renew Sust Energy Rev 29:435–448

    Article  Google Scholar 

  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  Google Scholar 

  • IEA (2010) Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries. International Energy Agency, IEA/OECD, Paris

    Google Scholar 

  • IEA (2013a) International Energy Agency, World Energy Outlook

    Google Scholar 

  • IEA/OECD (2013b) International Energy Agency, Paris

    Google Scholar 

  • IEA Bioenergy (2013) Biofuel-driven biorefineries: a selection of the most promising biorefinery concepts to produce large volumes of road transportation biofuels by 2025. IEA Bioenergy, Netherlands

    Google Scholar 

  • IPCC (2013) Intergovernmental panel on climate change, 2013. Climate change 2013—the physical science basis, Cambridge University Press, New York

    Google Scholar 

  • John UM (2013) Contribution of the ethanol industry to the economy of the United States. Renewable Fuels Association, Washington, DC

    Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  Google Scholar 

  • Kalnes T, Marker T, Shonnard DR (2007) Green diesel: a second generation biofuel. Int J Chem Reactor Eng 5:748

    Article  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  Google Scholar 

  • Koh MY, Ghazi TIM (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sust Energy Rev 15:2240–2251

    Google Scholar 

  • Lee S, Speight JG, Loyalka SK (2007) Handbook of alternative fuel technologies. CRC Taylor and Francis Group, USA

    Book  Google Scholar 

  • Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8

    Article  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2013) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38:965–977

    Article  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  Google Scholar 

  • Mohan D, Pitman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  Google Scholar 

  • Moheimani N, Borowitzka M (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14:578-597

    Google Scholar 

  • Ngo H, DP Ho, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749

    Article  Google Scholar 

  • NGV Global (2014) Current natural gas vehicle statistics

    Google Scholar 

  • OECD-FAO (2011) Agricultural outlook 2011–2020. Organisation for Economic Cooperation and Development (OECD) and Food and Agriculture Organisation (FAO), Paris and Rome

    Google Scholar 

  • Osamu K, Carl HW (1989) Biomass handbook. Gordon Breach Science Publisher, Amsterdam

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energy Rev 32:559–578

    Article  Google Scholar 

  • Prochnow A, Heiermann M, Plöchl M, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland—a review: 2. Combustion. Bioresour Technol 100:4945–4954

    Article  Google Scholar 

  • Ra K, Shiotsu F, Abe J, Morita S (2012) Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production. Biomass Bioenergy 37:330–334

    Article  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  Google Scholar 

  • REN21 (2013) Renewables 2013—global status report. REN21 secretariat, Paris

    Google Scholar 

  • Renewable Fuel Association (2007) Ethanol industry outlook 2008. Changing the climate

    Google Scholar 

  • Rowlands WN, Masters A, Maschmeyer T (2008) The biorefinery-challenges, opportunities, and an Australian perspective. Bull Sci Technol Soc 28(2):149–158

    Article  Google Scholar 

  • Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305

    Article  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  Google Scholar 

  • Sorensen B (2010) Carbon calculations to consider. Science 327:780–781

    Article  Google Scholar 

  • Southeast Asia Energy Outlook: World Energy Outlook Special Report, OECD/IEA, Paris; 2013.

    Google Scholar 

  • Steen EV, Claeys M (2008) Fischer-Tropsch catalysts for the biomass-to-liquid (BTL) process. Chem Eng Technol 31(5):655–660

    Article  Google Scholar 

  • Stevens CV, Verhe R (2004) Renewable bioresources scope and modification for nonfood application. Wiley, England

    Google Scholar 

  • The World Bank (2013) World databank, global economic monitor (GEM) commodities, World Bank Group, Washington, DC

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  Google Scholar 

  • Van Gerpen J (2014) Biodiesel processing and production. Fuel Process Tech 86:1097–1107

    Article  Google Scholar 

  • Wang M, Saricks C, Santini D (1999) Effects of fuel ethanol use on fuel-cycle energy and greenhouse gas emissions. Argonne National Laboratory

    Google Scholar 

  • Wang H, Gao LL, Chen L, Guo FJ, Liu TZ (2013) Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus. Bioresour Technol 142:39–44

    Article  Google Scholar 

  • Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56

    Article  Google Scholar 

  • Zhang G, Yang Z, Dong S (2011) Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res 124:66–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjari Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Shukla, M., Singh, S., Siddiqui, S.A., Shukla, A. (2015). Energy Sustainability by Biomass. In: Sharma, A., Kar, S. (eds) Energy Sustainability Through Green Energy. Green Energy and Technology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2337-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2337-5_11

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2336-8

  • Online ISBN: 978-81-322-2337-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics