Skip to main content

Mapping of Quantitative Trait Loci

  • Chapter
  • 4046 Accesses

Abstract

The genomic region associated with the expression of a quantitative trait is referred to as quantitative trait locus (QTL), which may contain one or more genes. QTLs have been grouped into different categories on the basis of their effect size, the effect of environment on their expression, and the manner of their action. QTL mapping is generally based on biparental populations in which the marker genotype and trait phenotype data are analyzed to detect association between the two. A large number of QTL analysis approaches have been proposed based on regression analysis, maximum likelihood parameter estimation, or Bayesian models. Single QTL mapping methods detect single QTL at a time. Multiple QTL mapping combines multiple regression analysis with simple interval mapping to include all the significant QTLs in the genetic model. Composite interval mapping can be extended to deal with data coming from multiple cross populations and for joint analysis of multiple traits. Appropriate experimental designs and QTL analysis methods are available for the detection and estimation of QTL x QTL and QTL x environment interactions. Confirmation of QTL analysis results, i.e., QTL validation, consists of confirmation of marker-QTL association and QTL position in unrelated germplasm and the assessment of effects of the genetic background on QTL expression. Homozygous lines derived from near-isogenic lines (NILs) and intercross recombinant inbred lines have been used for fine mapping of QTL regions. QTL meta-analysis attempts to integrate the results from different QTL studies to determine the “actual” number of QTLs affecting a trait and to reduce the QTL confidence intervals. QTL mapping identifies markers flanking the QTL regions, which can be used for marker-assisted selection in breeding programs. The findings from QTL mapping studies are affected by several factors like genetic properties of QTL, genetic background, size of mapping population, and effect of environment and experimental error.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arends D, Prins P, Jansen RC et al (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for multiple traits. Genetics 179:2275–2289

    Article  PubMed Central  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1997) QTL Cartographer: a reference manual and tutorial for QTL mapping. North Carolina State University, Raleigh

    Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the forty-ninth Annual Corn and Sorghum Research Conference, Chicago, IL, 7–8 Dec 1994. Am Seed Trade Assoc, Washington, DC, pp 250–266

    Google Scholar 

  • Beavis WD (1998) QTL analysis: Power, precision and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last twenty years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bink MCAM, Boer MP, ter Braak CJF et al (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96

    Article  Google Scholar 

  • Bink MCAM, Totir LR, ter Braak CJF et al (2012) QTL linkage analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124:1097–1113

    Article  PubMed Central  PubMed  Google Scholar 

  • Bink MCAM, Jansen J, Madduri M et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet. doi:10.1007/s00122-014-2281-3

    PubMed  Google Scholar 

  • Boitard S, Abdallah J, de Rochambeau H et al (2006) Linkage disequilibrium interval mapping of quantitative trait loci. 8th World Congress on Genetics Applied to Livestock Production, 13–18 August 2006, Belo Horizonte

    Google Scholar 

  • Broman KW, Wu H, Sen S et al (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Deorge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Vienne D, Causse M (2003) Mapping and characterising quantitative trait loci. In: de Vienne D (ed) Molecular markers in plant genetics and biotechnology. Science Publishers, Enfield, pp 89–124

    Google Scholar 

  • Deshmukh R, Singh A, Jain N et al (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomics 10:339–347

    Article  CAS  PubMed  Google Scholar 

  • Fang M (2012) A fast expectation-maximum algorithm for fine-scale QTL mapping. Theor Appl Genet 125:1727–1734

    Article  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: A meta-analysis. Genetics 155:463–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  • Jannink J-L, Jansen RC (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jannink J-L, Wu X-L (2003) Estimating allelic number and identity in state of QTL in interconnected families. Genet Res 81:133–144

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen RC, Jannink J-L, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43:829–834

    Article  CAS  Google Scholar 

  • Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  CAS  PubMed  Google Scholar 

  • Jourjon M-F, Jasson S, Marcel J et al (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130

    Article  CAS  PubMed  Google Scholar 

  • Kao CH, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping. Genetics 152:1203–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korol A, Frenkel Z, Cohen L et al (2007) Fractioned DNA pooling: a new cost-effective strategy for fine mapping of quantitative trait loci. Genetics 176:2611–2623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH, van der Werf JHJ (2007) Fine mapping of multiple interacting quantitative trait loci using combined linkage disequilibrium and linkage information. J Zhejiang Univ Sci B 8:787–791

    Article  PubMed Central  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007a) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y, Li Y, Wu S et al (2007b) Estimation of multilocus linkage disequilibria in diploid populations with dominant markers. Genetics 176:1811–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Bradbury P, Ersoz E et al (2011a) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE 6:e17573. doi:10.1371/journal.pone.0017573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Sidore C, Kang HM et al (2011b) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res 21:94–951

    Article  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER EXP V3.0: A tutorial and reference manual. A Whitehead Institute for Biomedical research Technical Report. http://www.mapmaker@genome.wi.mit.edu

    Google Scholar 

  • Liu B-H (1998) Statistical genomics: linkage mapping and QTL analysis. CRC, Boca Raton

    Google Scholar 

  • Luo ZW, Wu C-I, Kearsey MJ (2002) Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics 161:915–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore JRH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meuwissen THE, Goddard ME (2001) Prediction of identity by descent probabilities from marker haplotypes. Genet Sel Evol 33:605–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandit A, Rai V, Bal S et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genom 284:121–136

    Article  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphism. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127:181–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peleman JD, Sorensen AP, van der Voort JR (2005) Breeding by design: exploiting genetic maps and molecular markers through marker-assisted selection. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 109–129

    Chapter  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney RK, Tuberosa R (eds) Genomic assisted crop improvement, vol I. Springer, NY, pp 207–226

    Chapter  Google Scholar 

  • Satgopan JM, Yandell BS, Newton MA et al (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144:805–816

    Google Scholar 

  • Sax K (1923) Association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seaton G, Haley CS, Knott SA et al (2002) QTL express: mapping quantitative trait loci simple and complex pedigrees. Bioinformatics 18:339–340

    Article  CAS  PubMed  Google Scholar 

  • Singh BD (2009) Genetics, 2nd edn. Kalyani Publishers, New Delhi

    Google Scholar 

  • Soller M, Brody T (1976) On the power of experimental designs for the detection on linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39

    Article  CAS  PubMed  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and QTL meta-analysis algorithms. Http://bioinformatics.oxfordjournals.org/

  • Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. JQTL 2 (1)

    Google Scholar 

  • Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49–64

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5_011. Department of Statistics, North Carolina State University, Raleigh, http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

    Google Scholar 

  • Yandell BS, Mehta T, Banerjee S et al (2007) R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics 23:641–643

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z-B (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zou F (2009) QTL mapping in intercross and backcross populations. In: DiPitrello K (ed) Cardiovascular genomics, methods and protocols. Humana, Springer Science+Business Media, LLC, NY, pp 157–173

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Author(s)

About this chapter

Cite this chapter

Singh, B.D., Singh, A.K. (2015). Mapping of Quantitative Trait Loci. In: Marker-Assisted Plant Breeding: Principles and Practices. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2316-0_7

Download citation

Publish with us

Policies and ethics