Skip to main content
  • 3992 Accesses

Abstract

The success of crop improvement activities depends on the presence of adequate amounts of genetic diversity within a given crop species. Genetic diversity is detectable as genetic differences among the genotypes, strains, clones, or populations of a species. The proper and judicious utilization of genetic resources necessitates reliable quantification of the existing genetic diversity in the different crop plants. This analysis facilitates the identification of diverse genotypes/lines that could be used as parents in hybridization programs to recover superior recombinants or to broaden the genetic base of the elite germplasm of the crop. It also facilitates the identification of genotypes with special character(s) of considerable usefulness for the breeders. Conservation of the existing genetic diversity is one of the most important activities relevant to plant breeding since it minimizes the impact of genetic erosion associated with the modern agricultural practices and the developmental activities. Molecular markers are valuable tools for genetic diversity analyses and genetic profiling of germplasm accessions. Molecular marker profiling of the germplasm helps the rejection of duplicate accessions and the defining of a set of accessions that comprise the “core collection” and thereby makes germplasm conservation relatively more economical. In this chapter, the use of molecular markers for genetic diversity analysis, conservation of genetic diversity, unraveling the genetic basis of heterosis, identification of heterosis loci, and prediction of heterosis in specific cross combinations have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baranwal VK, Mikkilineni V, Zehr UB (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63:6309–6314

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi D, Beck BT, Eshed Y et al (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernardo R (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41:1–4

    Article  CAS  Google Scholar 

  • Brown SM, Kresovich S (1996) Molecular characterization for plant genetic resources conservation. In: Paterson AH (ed) Genome mapping in plants. RG Landes Company, Austin, pp 85–93

    Google Scholar 

  • Geering ADW (2013) Molecular markers for plant biosecurity. In: Henry RJ (ed) Molecular markers in plants. Wiley, USA, pp 99–117

    Google Scholar 

  • Goff SA (2011) A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. New Phytol 189:923–937

    Article  CAS  PubMed  Google Scholar 

  • Gowen JW (ed) (1952) Heterosis. Iowa State College, Ames

    Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–874

    Article  Google Scholar 

  • Hua J, Xing Y, Wu W et al (2003) Single locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaccord P (1908) Nouvelles researches sur la distribution florale. Bull Soc Vaudoise Sci Natl 44:223–270

    Google Scholar 

  • Kaeppler S (2012) Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Botany 12 pages. doi:10.5402/2012/682824

  • Krishnan GS, Singh AK, Waters DLE et al (2013) Molecular markers for harnessing heterosis. In: Henry RJ (ed) Molecular markers in plants. Wiley, USA, pp 119–136

    Google Scholar 

  • Lee M, Godshalk EB, Lamke KR et al (1989) Association of restriction fragment length polymorphism among maize inbreds with agronomic performance of their crosses. Crop Sci 29:1067–1071

    Article  Google Scholar 

  • Lee EA, Ash MJ, Good B (2006) Re-examining the relationship between degree of relatedness, genetic effects, and heterosis in maize. Crop Sci 47:629–635

    Article  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Wu S, Tian et al (2011) Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.). Plant Sci 181:14–22

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crop plants. ASA-CSSA, Madison, pp 99–118

    Google Scholar 

  • Melchinger AE, Lee M, Lamkey KR et al (1990) Genetic diversity for restriction fragment length polymorphism and heterosis for two diallel sets of maize inbreds. Theor Appl Genet 80:488–496

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants – salient statistical tools and considerations. Crop Sci 43:1235–1248

    Article  Google Scholar 

  • Moll RH, Lonnquist JH, Fortuna JV et al (1965) The relation of heterosis and genetic divergence in maize. Genetics 52:139–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC et al (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282

    Article  Google Scholar 

  • Rogers JS (1972) Measure of genetic similarity and genetic distance; studies in genetics, VIII. Univ Texas Publ 2713:145–153

    Google Scholar 

  • Rymer PD, Rossetto M (2013) Applications of molecular markers in plant conservations. In: Henry RJ (ed) Molecular markers in plants. Wiley, USA, pp 81–98

    Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Shi JQ, Li RY, Zou J et al (2011) A dynamic and complex network regulates the heterosis of yield correlated traits in rapeseed (Brassica napus L.). PLoS One 6:e21645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh BD (2012a) Plant breeding, principles and methods, 9th edn. Kalyani Publishers, New Delhi

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. University Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, vol IV. Univ of Chicago Press, Chicago

    Google Scholar 

  • Yao H, Gray AD, Auger DL et al (2012) Genomic dosage effects on heterosis in triploid maize. Proc Natl Acad Sci USA 110:265–269

    Google Scholar 

  • Yu SB, Li JX, Xu GC et al (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H-Y, He H, Chen L-B et al (2008) A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant 1:720–731

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Author(s)

About this chapter

Cite this chapter

Singh, B.D., Singh, A.K. (2015). Phylogenetic Relationships and Genetic Diversity. In: Marker-Assisted Plant Breeding: Principles and Practices. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2316-0_11

Download citation

Publish with us

Policies and ethics