Skip to main content

Introduction to Marker-Assisted Crop Improvement

  • Chapter

Abstract

Crop cultivation has played an important role in human history and civilization. Agriculture began with the selection of some plant species to be grown in primitive fields. There would have been some form of selection of seeds with desirable features for planting the crop next season; this began to develop into the planned and systematic selection efforts around the beginning of the nineteenth century. With the rediscovery of Mendel’s laws of inheritance in 1900, the art of selection acquired a scientific framework and initiated the development of a new discipline called “plant breeding.” The basic necessity for selection is the presence of genetic variation for the traits to be improved; this variation can be created through hybridization, mutagenesis, somaclonal variation, and, more recently, recombinant DNA technology. The genetic variation for qualitative traits is easily and effectively exploited by selection. In contrast, selection for quantitative traits is much less effective due to their polygenic control and, more particularly, the confusing effects of the environmental influences on their phenotypic expression. Since most of the traits of biological and economic significance are quantitative in nature, an effective strategy for their selection needs to be devised. This need becomes more imperative in view of the increasing human population and the adverse impacts of the climate change, in view of which varieties combining higher yields with resistance/tolerance to abiotic and biotic stresses have to be developed in relatively shorter periods of time. The transgenic technology has generated some useful crop varieties, but their consumer acceptance remains one of the major issues. In contrast, the molecular marker technology does not have any consumer acceptance issues. In addition, it has several plant breeding applications, including detection and mapping of QTLs, and reliable indirect selection for target genes/QTLs (marker-assisted selection). The present chapter examines the contributions of conventional plant breeding, pinpoints its limitations, and surveys the strategies available for supplementing plant breeding activities. The usefulness of molecular markers is highlighted by summarizing their contributions to variety development and indicating the future research needs in this promising area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Babu R, Nair SK, Prasanna BM et al (2004) Integrating marker-assisted selection in crop breeding – prospects and challenges. Current Sci 87:607–619

    CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in a commercial breeding programme. Crop Sci 47:S154–S163

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:1–10

    Article  Google Scholar 

  • Hospital F (2005) Selection in backcross programmes. Phil Trans R Soc B 360:1503–1511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lusser M, Raney T, Tillie P et al (2012a) International workshop on socio-economic impacts of genetically modified crops co-organised by JRC-IPTS and FAO, Workshop proceedings. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Lusser M, Parisi C, Plan D et al (2012b) Deployment of new biotechnologies in plant breeding. Nature Biotechnol 30:231–239

    Article  CAS  Google Scholar 

  • Mackill DJ, Junjian N (2001) Molecular mapping and marker-assisted selection for major gene traits in rice. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Proc Fourth Rice Genetics Symposium, 22–27 Oct 2000. Science Publishers, Enfield and International Rice Research Institute, Los Banos, pp 137–151

    Google Scholar 

  • Mir RR, Varshney RK (2013) Future prospects of molecular markers in plants. In: Henry RJ (ed) Molecular markers in plants. Wiley, USA, pp 169–190

    Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA et al (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1898

    Article  CAS  PubMed  Google Scholar 

  • Singh BD (2012a) Plant breeding, principles and methods, 9th edn. Kalyani Publishers, New Delhi

    Google Scholar 

  • Singh BD (2012b) Biotechnology, expanding horizons, 4th edn. Kalyani Publishers, New Delhi

    Google Scholar 

  • Sticklen MB (2007) Feedstock crop genetic engineering for alcohol fuels. Crop Sci 47:2238–2248

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Ziska LH, Bunce JA (2007) Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytol 175:607–618

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Author(s)

About this chapter

Cite this chapter

Singh, B.D., Singh, A.K. (2015). Introduction to Marker-Assisted Crop Improvement. In: Marker-Assisted Plant Breeding: Principles and Practices. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2316-0_1

Download citation

Publish with us

Policies and ethics