Skip to main content

Carbon-Based Hierarchical Micro- and Nanostructures: From Synthesis to Applications

  • Chapter
Nanoscale and Microscale Phenomena

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 1367 Accesses

Abstract

We review various methodologies as developed recently in our group for the production of carbon xerogel particles with a wide variety of morphologies (from spherical to fractal-like) in the size range of micro- to nanoscale. To name a few are sol–gel emulsification, electrospraying, electrospinning, and chemical vapor deposition. The role of various process parameters is studied in length to achieve a fine tuning and control on the size and morphologies of carbon structures. A large number of polymer precursors such as organic xerogel, photoresist materials, and polymers are employed as a source of carbon. Other than conventional photolithography, soft lithography and biomimicking approaches are used to fabricate micropatterned carbon surfaces which are further used to fabricate hierarchical carbon structures by combining top-down, bottom-up, and self-assembly processes. Thus, fabricated hierarchical carbon structures due to their unique properties such as controllable wettability, high surface area, and biocompatibility open up new possibilities in the area of carbon-based microelectrochemical systems, microfluidics, biosensors, and environmental pollution control. A more insight about some of these applications is presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinoshita K (1988) Carbon, electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  2. Schueller OJA, Brittain ST, Marzolin C, Whitesides GM (1997) Fabrication and characterization of glassy carbon MEMS. Chem Mater 9:1399–1406

    Google Scholar 

  3. Schueller OJA, Brittain ST, Whitesides GM (1999) Fabrication of glassy carbon microstructures by soft lithography. Sensors Actuators A Phys 72:125–139

    Google Scholar 

  4. McCreery RL (1991) Carbon electrodes: structural effects on electron transfer kinetics. In: Bard AJ (ed) Electroanalytical chemistry, vol 17. Dekker, New York, p 221

    Google Scholar 

  5. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    Google Scholar 

  6. Pocard NL, Alsmeyer DC, McCreery RL, Neenan TX, Callstrom MR (1992) Doped glassy carbon: a new material for electrocatalysis. J Mater Chem 2:771–784

    Google Scholar 

  7. Jenkins GM, Kawamura K (1976) Polymeric carbons–carbon fibre, glass and char. Cambridge University Press, Cambridge

    Google Scholar 

  8. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    Google Scholar 

  9. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114

    Google Scholar 

  10. Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35:1271–1278

    Google Scholar 

  11. Wang C, Madou M (2005) Short communication from MEMS to NEMS with carbon. Biosens Bioelectron 20:2181–2187

    Google Scholar 

  12. Singh A, Jayaram J, Madou M, Akbar S (2002) Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J Electrochem Soc 149:E78–E83

    Google Scholar 

  13. Wang C, Taherabadi L, Jia G, Madou MJ (2004) Carbon-MEMS architectures for 3D microbatteries. Electrochem Solid-State Lett 7:A435–A438

    Google Scholar 

  14. Wang C, Jia G, Taherabadi LH, Madou MJ (2005) A novel method for the fabrication of high-aspect ratio C-MEMS structures. J Microelectromech Syst 14:348–358

    Google Scholar 

  15. Teixidor GT, Zaouk RB, Park BY, Madou MJ (2008) Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J Power Sources 183:730–740

    Google Scholar 

  16. Teixidor GT, Gorkin RA III, Tripathi PP, Bisht GS, Kulkarni M, Maiti TK, Battcharyya TK, Subramaniam JR, Sharma A, Park BY, Madou M (2008) Carbon microelectromechanical systems as a substratum for cell growth. Biomed Mater 3:034116

    Google Scholar 

  17. Sharma CS, Kulkarni MM, Sharma A, Madou M (2009) Synthesis of carbon xerogel particles and fractal-like structures. Chem Eng Sci 64:1536–1543

    Google Scholar 

  18. Sharma CS, Upadhyaya DK, Sharma A (2009) Controlling the morphology of resorcinol-formaldehyde based carbon xerogels by sol concentration, shearing and surfactants. Ind Eng Chem Res 48:8030–8036

    Google Scholar 

  19. Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919

    Google Scholar 

  20. Doshi J, Reneker HD (1995) Electrospinning process and application of electrospun fibers. J Electrostat 35:151–160

    Google Scholar 

  21. Renekar DH, Yarin AL, Fong H, Koombhongse SJ (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Appl Phys 87:4531–4547

    Google Scholar 

  22. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78:1149–1151

    Google Scholar 

  23. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. II. Applications. Phys Fluids 13:2221–2236

    MathSciNet  Google Scholar 

  24. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90:144502

    Google Scholar 

  25. Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030

    Google Scholar 

  26. Tan S-H, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46:6128–6134

    Google Scholar 

  27. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913–6922

    Google Scholar 

  28. Tan S, Huang X, Wu B (2007) Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers. Polym Int 56:1330–1339

    Google Scholar 

  29. Sharma CS, Patil S, Saurabh S, Sharma A, Venkataraghavan R (2009) Resorcinol–formaldehyde based carbon nanospheres by electrospraying. Bull Mater Sci 32:239–246

    Google Scholar 

  30. Sharma CS, Vasita R, Upadhyay DK, Sharma A, Katti DS, Venkataraghavan R (2010) Photoresist derived electrospun carbon nanofibers with tunable morphology and surface properties. Ind Eng Chem Res 49:2731–2739

    Google Scholar 

  31. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  32. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    Google Scholar 

  33. Ando Y, Iijima S (1993) Preparation of carbon nanotubes by arc-discharge evaporation. Jpn J Appl Phys 32:L107–L109

    Google Scholar 

  34. Bower C, Zhou O, Zhu W, Werder J, Jin S (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769

    Google Scholar 

  35. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317

    Google Scholar 

  36. Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663

    Google Scholar 

  37. Katepalli H, Bikshapathi M, Sharma CS, Verma N, Sharma A (2011) Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chem Eng J 171:1194–1200

    Google Scholar 

  38. Sharma CS, Sharma A, Madou M (2010) Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers. Langmuir 26:2218–2222

    Google Scholar 

  39. Kulkarni MM, Sharma CS, Sharma A, Kalmodia S, Basu B (2012) Multiscale micro-patterned polymeric and carbon substrates derived from buckled photoresist films: fabrication and cytocompatibility. J Mater Sci 47:3867–3875

    Google Scholar 

  40. Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42:169–175

    Google Scholar 

  41. Job N, Panariello F, Marien J, Crine M, Pirard J-P, Leonard A (2006) Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels. J Non-Cryst Solids 352:24–34

    Google Scholar 

  42. Job N, Pirard R, Marien J, Pirard JP (2004) Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42:619–628

    Google Scholar 

  43. Kim SI, Yamamoto T, Endo A, Ohmori T, Nakaiwa M (2006) Influence of nonionic surfactant concentration on physical characteristics of resorcinol-formaldehyde carbon cryogel microspheres. J Ind Eng Chem 12(3):484–488

    Google Scholar 

  44. Matos I, Fernandes S, Guerreiro L, Barat S, Ramos AM, Vital J, Fonseca IM (2006) The effect of surfactants on the porosity of carbon xerogels. Microporous Mesoporous Mater 92:38–46

    Google Scholar 

  45. Shen J, Li J, Chen Q, Luo T, Yu W, Qian Y (2006) Synthesis of multi-shell carbon microspheres. Carbon 44:190–193

    Google Scholar 

  46. Xu L, Jianwei L, Jin D, Yiya P, Yitai Q (2005) A self-assembly template approach to form hollow hexapod-like, flower-like and tube-like carbon materials. Carbon 43:1560–1562

    Google Scholar 

  47. Bourret M, Schecter RS (1988) Microemulsions and related systems. In: Bourret M, Schecter RS (eds) Surfactant science series, vol 30. Marcel Dekker, New York

    Google Scholar 

  48. Miller CA, Neogi P (2007) Interfacial phenomena: equilibrium and dynamic effects, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  49. Velentas KJ, Bilous O, Amundson NR (1966) Analysis of breakage in dispersed phase systems. Ind Eng Chem Fundam 5:271–279

    Google Scholar 

  50. Tcholakova S, Denkov ND, Danner T (2004) Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow. Langmuir 20:7444–7458

    Google Scholar 

  51. Narsimhan G (2004) Model for drop coalescence in a locally isotropic turbulent flow field. J Colloid Interface Sci 272:197–209

    Google Scholar 

  52. Qiao WM, Song Y, Lim SY, Hong SH, Yoon SH, Mochida I, Imaoka T (2006) Carbon nanospheres produced in an arc-discharge process. Carbon 44:187–190

    Google Scholar 

  53. Govindraj A, Sen R, Nagaraju BV, Rao CNR (1997) Carbon nanospheres and tubules obtained by the pyrolysis of hydrocarbons. Philos Mag Lett 76:363–367

    Google Scholar 

  54. Journet C, Bernier P (1998) Production of carbon nanotubes. Appl Phys A 67:1–9

    Google Scholar 

  55. Yap YK, Yoshimura M, Mori Y, Sasaki T, Hanada T (2002) Formation of aligned carbon nanotubes by RF-plasma-assisted pulsed-laser deposition. Physica B 323:341–343

    Google Scholar 

  56. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Google Scholar 

  57. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodrigues FG et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys 67:29–37

    Google Scholar 

  58. Cloupeau M, Prunet-Foch BJ (1989) Electrostatic spraying of liquid in cone jet mode. J Electrostat 22:135–159

    Google Scholar 

  59. Cloupeau M, Prunet-Foch BJ (1990) Electrostatic spraying of liquids: main functioning modes. J Electrostat 25:165–184

    Google Scholar 

  60. Cloupeau M, Prunet-Foch BJ (1994) Electrohydrodynamic spraying functioning modes: a critical review. Aerosol Sci Technol 25:1021–1036

    Google Scholar 

  61. Jaworek A (2007) Micro- and nanoparticle production by electrospraying. Powder Technol 176:18–35

    Google Scholar 

  62. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66:197–219

    Google Scholar 

  63. Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P (2006) Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 55:825–833

    Google Scholar 

  64. Wang Y, Serrano S, Santiago-Aviles JJ (2003) Raman characterization of carbon nanofibers prepared using electrospinning. Synth Met 138:423–427

    Google Scholar 

  65. Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43:2175–2185

    Google Scholar 

  66. Walther F, Davidovskaya P, Zurcher S, Kaiser M, Herberg H, Gigler A, Stark RW (2007) Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J Micromech Microeng 17:524–531

    Google Scholar 

  67. Ranganathan S, McCreery R, Majji SM, Madou M (2000) Photoresist‐derived carbon for microelectromechanical systems and electrochemical applications. J Electrochem Soc 147:277–282

    Google Scholar 

  68. Park BY, Taherabadi L, Wang C, Zoval J, Madou MJ (2005) Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media. J Electrochem Soc 152:J136–J143

    Google Scholar 

  69. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Google Scholar 

  70. Das A, Mukherjee R, Katiyer V, Kulkarni M, Ghatak A, Sharma A (2007) Generation of sub-micrometer-scale patterns by successive miniaturization using hydrogels. Adv Mater 19:1943–1946

    Google Scholar 

  71. Sharma CS, Verma A, Kulkarni MM, Upadhyay DK, Sharma A (2010) Microfabrication of carbon structures by pattern miniaturization in resorcinol-formaldehyde gel. ACS Appl Mater Interfaces 2:2193–2197

    Google Scholar 

  72. Sharma CS, Katepalli H, Sharma A, Madou M (2011) Fabrication and electrical conductivity of suspended carbon nanofiber arrays. Carbon 49:1727–1732

    Google Scholar 

  73. Blossey R (2003) Self-cleaning surfaces-virtual realities. Nat Mater 2:301–306

    Google Scholar 

  74. Cao M, Song X, Zhai J, Wang J, Wang Y (2006) Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J Phys Chem B 110:13072–13075

    Google Scholar 

  75. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652

    Google Scholar 

  76. Truesdell R, Mammoli A, Vorobieff P, Swol FV, Brinker CJ (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97:044504

    Google Scholar 

  77. Choi CH, Ulmanella U, Kim J, Ho CM, Kim CJ (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18:087105

    Google Scholar 

  78. Li X, Reinhoudt D, Calama MC (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    Google Scholar 

  79. Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943–1963

    Google Scholar 

  80. Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633

    Google Scholar 

  81. Xiu Y, Zhu L, Hess DW, Wong CP (2008) Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces. J Phys Chem C 112:11403–11407

    Google Scholar 

  82. Bhushan B, Jung YC (2008) Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces. J Phys Condens Matter 20:225010

    Google Scholar 

  83. Nosonovsky M, Bhushan B (2009) Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr Opin Colloid Interface Sci 14:270–280

    Google Scholar 

  84. Koch K, Bhushan B, Jung YC, Barthlott W (2009) Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5:1386–1393

    Google Scholar 

  85. Li Y, Huang XJ, Heo SH, Li CC, Choi YK, Cai WP, Cho SO (2007) Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir 23:2169–2174

    Google Scholar 

  86. Banerjee D, Mukherjee S, Chattopadhyay KK (2010) Controlling the surface topology and hence the hydrophobicity of amorphous carbon thin films. Carbon 48:1025–1031

    Google Scholar 

  87. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701–1705

    Google Scholar 

  88. Li W, Wang X, Chen Z, Waje M, Yan Y (2005) Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. Langmuir 21:9386–9389

    Google Scholar 

  89. Zou J, Chen H, Chunder A, Yu Y, Huo Q, Zhai L (2008) Preparation of a superhydrophobic and conductive nanocomposite coating from a carbon-nanotube-conjugated block copolymer dispersion. Adv Mater 20:3337–3341

    Google Scholar 

  90. Wang N, Xi J, Wang S, Liu H, Feng L, Jiang L (2008) Long-term and thermally stable superhydrophobic surfaces of carbon nanofibers. J Colloid Interface Sci 320:365–368

    Google Scholar 

  91. Lu SH, Tun MHN, Mei ZJ, Chia GH, Lim X, Sow C (2009) Improved hydrophobicity of carbon nanotube arrays with micropatterning. Langmuir 25:12806

    Google Scholar 

  92. Jung YC, Bhushan B (2009) Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano 3:4155–4163

    Google Scholar 

  93. Han ZJ, Tay BK, Shakerzadeh M, Ostrikov K (2009) Superhydrophobic amorphous carbon/carbon nanotube nanocomposites. Appl Phys Lett 94:223106

    Google Scholar 

  94. Feng L, Yang Z, Zhai J, Song Y, Liu B, Ma Y, Yang Z, Jiang L, Zhu D (2003) Superhydrophobicity of nanostructured carbon films in a wide range of pH values. Angew Chem Int Ed 42:4217–4220

    Google Scholar 

  95. Shakerzadeh M, Teo HE, Tan C, Tay BK (2009) Superhydrophobic carbon nanotube/amorphous carbon nanosphere hybrid film. Diamond Relat Mater 18:1235–1238

    Google Scholar 

  96. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Google Scholar 

  97. Ma M, Mao Y, Gupta M, Gleason KK, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38:9742–9748

    Google Scholar 

  98. Ma M, Hill RM (2006) Superhydrophobic Surfaces. Curr Opin Colloid Interface Sci 11:193–202

    Google Scholar 

  99. Yoon Y, Moon HS, Lyoo WS, Lee TS, Park WH (2008) Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. J Colloid Interface Sci 320:91–95

    Google Scholar 

  100. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Google Scholar 

  101. Maitra T, Sharma S, Srivastava A, Cho Y-K, Madou M, Sharma A (2012) Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning. Carbon 50:1753–1761

    Google Scholar 

  102. Sharma S, Sharma A, Cho Y-K, Madou M (2012) Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon-MEMS and carbon-NEMS platforms. ACS Appl Mater Interfaces 4:34–39

    Google Scholar 

  103. Park BY, Zaouk R, Wang C, Madou MJ (2007) A case for fractal electrodes in electrochemical applications. J Electrochem Soc 154:P1

    Google Scholar 

  104. Zhai L, Berg MC, Cebeci F, Kim Y, Milwid JM, Rubner MF, Cohen RH (2006) Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Lett 6:1213–1217

    Google Scholar 

  105. Manso-Silvan M, Valsesia A, Hasiwa M, Rodríguez-Navas C, Gilliland D, Ceccone G, Ruiz JPG, Rossi F (2007) Micro-spot, UV and wetting patterning pathways for applications of biofunctional aminosilane-titanate coatings. Biomed Microdevices 9:287–294

    Google Scholar 

  106. Ghosh H, Alves C, Tong Z, Tettey K, Konstantopoulos K, Stebe KJ (2008) Multifunctional surfaces with discrete functionalized regions for biological applications. Langmuir 24:8134–8142

    Google Scholar 

  107. Bradley RH, Rand B (1995) On the physical adsorption of vapors by microporous carbons. J Colloid Interface Sci 169:168–176

    Google Scholar 

  108. Suzuki M (1994) Activated carbon fiber: fundamentals and applications. Carbon 32:577–586

    Google Scholar 

  109. Mochida I, Korai Y, Shirahama M, Kawano S, Hada T, Seo Y, Yoshikawa M, Yasutake A (2000) Removal of Sox and Nox over activated carbon fibers. Carbon 38:227–239

    Google Scholar 

  110. Huang ZH, Kang F, Zheng YP, Yang JB, Liang KM (2002) Adsorption of trace polar methyl-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon 40:1363–1367

    Google Scholar 

  111. Adapa S, Gaur V, Verma N (2006) Catalytic oxidation of NO by activated carbon fiber (ACF). Chem Eng J 116:25–37

    Google Scholar 

  112. Gaur V, Sharma A, Verma N (2006) Preparation and characterization of ACF for the adsorption of BTX and SO2. Chem Eng Process 45:1–13

    Google Scholar 

  113. Gaur V, Asthana R, Verma N (2006) Removal of SO2 by activated carbon fibers in the presence of O2 and H2O. Carbon 44:46–60

    Google Scholar 

  114. Gaur V, Sharma A, Verma N (2005) Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals. Carbon 43:3041–3053

    Google Scholar 

  115. Gaur V, Sharma A, Verma N (2007) Removal of SO2 by activated carbon fibre impregnated with transition metals. Can J Chem Eng 85:188–198

    Google Scholar 

  116. Rathore R, Srivastava D, Agarwal A, Verma N (2010) Development of surface functionalized activated carbon fiber for control of NO and particulate matter. J Hazard Mater 173:211–222

    Google Scholar 

  117. Singhal RM, Sharma A, Verma N (2008) Micro−nano hierarchal web of activated carbon fibers for catalytic gas adsorption and reaction. Ind Eng Chem Res 47:3700–3707

    Google Scholar 

  118. Gupta AK, Deva D, Sharma A, Verma N (2009) Adsorptive removal of fluoride by micro-nanohierarchical web of activated carbon fibers. Ind Eng Chem Res 48:9697–9707

    Google Scholar 

  119. Rodriguez AJ, Guzman ME, Lim CS, Minaie B (2010) Synthesis of multiscale reinforcement fabric by electrophoretic deposition of amine-functionalized carbon nanofibers onto carbon fiber layers. Carbon 48:3256–3259

    Google Scholar 

  120. Hsieh CT, Chen WY (2010) Water/oil repellency and drop sliding behavior on carbon nanotubes/carbon paper composite surfaces. Carbon 48:612–619

    Google Scholar 

  121. Lim S, Yoon SH, Shimizu Y, Jung H, Mochida I (2004) Surface control of activated carbon fiber by growth of carbon nanofiber. Langmuir 20:5559–5563

    Google Scholar 

  122. Bokros JC (1997) Carbon biomedical devices. Carbon 15:355–371

    Google Scholar 

  123. Louise PC (1999) Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol 9:1095–1105

    Google Scholar 

  124. Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846

    Google Scholar 

  125. Pennacchi M, Armentano I, Zeppetelli S, Fiorillo M, Guarnieri D, Kenny JM, Netti PA (2004) Influence of surface patterning on cell migration and spreading. Eur Cell Mater 7:77

    Google Scholar 

  126. Petreaca M, Martins-Green M (2008) Cell-ECM interactions in repair and regeneration. In: Atala A, Lanza R, Thomsan JA, Nerem R (eds) Principles of regenerative medicine, 5th edn. Academic Press, Burlington, pp 66–99

    Google Scholar 

  127. Albert B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecule biology of the cell, 4th edn. Garland Science Group, Taylor and Francis, New York

    Google Scholar 

  128. Misra A, Pei ZLR, Wu Z, Thirumaran T (2007) N-WASP plays a critical role in fibroblast adhesion and spreading. Biomed Biophys Res Commun 364:908–912

    Google Scholar 

  129. Detrait E, Lhoest JB, Knoops B, Bertrand P, Aguilar PVB (1998) Orientation of cell adhesion and growth on patterned heterogeneous polystyrene surface. J Neurosci Methods 84:193–204

    Google Scholar 

Download references

Acknowledgment

We acknowledge the financial support from IRHPA project of DST to carry out this work. We also acknowledge the support from DST Unit on Soft Nanofabrication and Indo-US Centre of Excellence on Fabrionics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sharma, C.S., Sharma, A. (2015). Carbon-Based Hierarchical Micro- and Nanostructures: From Synthesis to Applications. In: Joshi, Y., Khandekar, S. (eds) Nanoscale and Microscale Phenomena. Springer Tracts in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2289-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2289-7_5

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2288-0

  • Online ISBN: 978-81-322-2289-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics