Skip to main content

Plant MicroRNAs: Biogenesis, Functions, and Applications

  • Chapter

Abstract

MicroRNAs (miRNAs) are small 21-nt-long noncoding RNAs, involved in posttranscriptional regulation of mRNA either by direct cleavage or translational repression. They are mainly transcribed as independent transcriptional units and their expression differs during different stages of plant development. Plant miRNAs have been well studied during developmental stages and different environmental stress conditions, but their functions and regulatory networks have yet to be understood. Understanding their regulatory roles may open new avenues for crop improvement which is necessary for increased food production to feed the growing population. MicroRNA interference (miRNAi) technology provides an efficient platform for functional studies and agricultural applications.

The first two authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated micro-RNA. Development 131:3357–3365

    CAS  PubMed  Google Scholar 

  • Ali I, Amin I, Briddon RW, Mansoor S (2013) Artificial microRNA-mediated resistance against the monopartite begomovirus cotton leaf curl burewala virus. Virol J 10:231

    PubMed Central  PubMed  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488

    CAS  PubMed  Google Scholar 

  • Arteaga-Vázquez M, Caballero-Pe´rez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369

    PubMed Central  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    CAS  PubMed  Google Scholar 

  • Balmer D, Mauch-Mani B (2013) Small yet mighty: microRNA in plant –microbe interactions. Microrna 2:73–80

    CAS  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazzini AA, Almasia NI, Manacorda CA, Mongelli VC et al (2009) Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biol 9:152

    PubMed Central  PubMed  Google Scholar 

  • Blevins T, Rajeswaran R, Aregger M, Borah BK et al (2011) Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39(12):5003–5014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D et al (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504

    CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze Achard L, Bruun Rasmussen M, Dunoyer P et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    CAS  PubMed  Google Scholar 

  • Bullini L, Coluzzi M (1972) Natural selection and genetic drift in protein polymorphism. Nature 239(5368):160–161

    CAS  PubMed  Google Scholar 

  • Campo S, Peris Peris C, Sire C, Moreno AB et al (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199(1):212–227

    CAS  PubMed  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    CAS  PubMed  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    CAS  PubMed  Google Scholar 

  • Chen X, Liu J, Cheng Y, Jia D (2002) HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 129:1085–1094

    CAS  PubMed  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Am Soc Plant Biol 23:431–442

    CAS  Google Scholar 

  • Du P, Wu J, Zhang J, Zhao S, Zheng H et al (2011) Viral infection induces expression of novel phased MicroRNAs from conserved cellular MicroRNA precursors. PLoS Pathol 7(8):e1002176

    CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    CAS  PubMed  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38:258–263

    CAS  PubMed  Google Scholar 

  • Eulalio A, Rehwinkel J, Stricker M, Huntzinger E et al (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    PubMed Central  PubMed  Google Scholar 

  • Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ et al (2010) MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22:1074–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felippes FF, Weigel D (2009) Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep 10:264–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. Plant J 70:541–547

    PubMed  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    CAS  PubMed  Google Scholar 

  • Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH et al (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    CAS  PubMed  Google Scholar 

  • Gu M, Liu W, Meng O, Wenqi Zhang W, Chen A, Sun S, Xu G (2014) Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signalings. J Int Plant Biol. doi:10.1111/jipb.12233

    Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74(5):840–851

    CAS  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo N, Ye WW, Wu XL, Shen DY, Wang YC, Xing H, Dou DL (2011) Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54:954–958

    CAS  PubMed  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    CAS  PubMed  Google Scholar 

  • Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS et al (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR–NBS–LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452

    CAS  PubMed  Google Scholar 

  • Heisel SE, Zhang Y, Allen E, Guo L et al (2008) Characterization of unique small RNA populations from rice grain. PLoS One 3:e2871

    PubMed Central  PubMed  Google Scholar 

  • Hewezi T, Howe P, Maier TR, Baum TJ (2008) Arabidopsis small RNAs and their targets during cyst nematode parasitism. Mol Plant Microbe Interact 21:1622–1634

    CAS  PubMed  Google Scholar 

  • Hu Q, Hollunder J, Niehl A, Kørner CJ et al (2011) Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS One 6(5):e19549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutvágner G, Zamore PD (2002) RNAi: nature abhors a double-strand. Curr Opin Genet Dev 12:225–232

    PubMed  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243

    CAS  PubMed  Google Scholar 

  • Jin W, Wu F, Xiao L, Liang G et al (2011) Microarray-based analysis of Tomato miRNA regulated by Botrytis cinerea. J Plant Growth Regul 31:38–46

    CAS  Google Scholar 

  • Jones Rhoades MW, Bartel DP (2004) Computational identification of plant micro-RNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    CAS  PubMed  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    CAS  PubMed  Google Scholar 

  • Kaneko M, Inukai Y, Ueguchi Tanaka M, Itoh H et al (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16:33–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C et al (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    CAS  PubMed  Google Scholar 

  • Kettles GJ, Drurey C, Schoonbeek H, Maule AJ, Hogenhout SA (2013) Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol 198:1178–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S et al (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochem Biophys Acta 1819:137–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    CAS  PubMed  Google Scholar 

  • Kulcheski F, Oliveira LFV, Molina LG, Almerão MP, Rodrigues FA et al (2011) Identification of novel soybean MicroRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kutter C, Schob H, Stadler M, Meins F Jr, Si-Ammour A (2007) MicroRNA-mediated regulation of stomatal development in Arabidopsis. Plant Cell 19:2417–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang QL, Zhou XC, Zhang XL, Drabek R et al (2011) Microarray-based identification of tomato microRNAs and time course analysis of their response to cucumber mosaic virus infection. J Zhejiang Univ Sci B 12(2):116–125

    PubMed Central  PubMed  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    CAS  PubMed  Google Scholar 

  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 102:9412–9417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Lelandais-Brie’ re C, Naya L, Sallet E, Calenge F et al (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel MicroRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796

    Google Scholar 

  • Li A, Mao L (2007) Evolution of plant microRNA gene families. Cell Res 17:212–218

    CAS  PubMed  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3 ′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    CAS  PubMed  Google Scholar 

  • Li Y, Zhang Q, Zhang J, Wu L et al (2010) Identification of microRNAs involved in pathogen-associated molecular pattern triggered plant innate immunity. Plant Physiol 152:2222–2231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Wang X, Zhang S, Liu D et al (2012) Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLoS One 7:e39650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540

    CAS  PubMed  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426:465–469

    CAS  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Zhang L, Sun J, Wang MB, Liu Y (2010) A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Mol Biol Rep 37(2):903–909

    CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    CAS  PubMed  Google Scholar 

  • Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142

    CAS  PubMed  Google Scholar 

  • Lu C, Fedoroff NA (2000) Mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. Plant Cell 12:2351–2366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu C, Kulkarni K, Souret FF, Valliappan RM et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098

    CAS  PubMed  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K, Pillay M et al (2008a) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105:4951–4956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008b) Stress-responsive microRNAs in populus. Plant J 55:131–151

    CAS  PubMed  Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of micro RNA regulatory programs in plant flower development. Dev Biol 380:133–144

    CAS  PubMed  Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD et al (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    CAS  PubMed  Google Scholar 

  • Ma Z, Coruh C, Axtell MJ (2010) Arabidopsis lyrata small RNAs: transient MIRNA and small interfering RNA loci within the Arabidopsis genus. Plant Cell 22:1090–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G et al (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulator network quantitatively regulating lateral root growth. Plant Cell 22(4):1104–1117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18:975–980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mecchia MA, Debernardi JM, Rodriguez RE, Schommer C, Palatnik JF (2013) MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mech Dev 130:2–13

    CAS  PubMed  Google Scholar 

  • Mette MF, Winden JV, Matzke M, Matzke AJM (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mi S, Cai T, Hu Y, Chen Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  PubMed  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129

    CAS  PubMed  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T et al (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    CAS  PubMed  Google Scholar 

  • Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4:230–239

    PubMed Central  PubMed  Google Scholar 

  • Ochando I, Jover-Gil S, Ripoll JJ, Candela H et al (2006) Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in Arabidopsis. Plant Physiol 141:607–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    CAS  PubMed  Google Scholar 

  • Pandey SP, Shahi P, Gase K, Baldwin IT (2007) Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci U S A 105(12):4559–4564

    Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N, Himber C et al (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    CAS  PubMed  Google Scholar 

  • Park MY, Wu G, Gonzalez Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102:3691–3696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parry DH, Xu J, Ruvkun G (2007) A whole-genome RNAi screen for C. elegans miRNA pathway genes. Curr Biol 17:2013–2022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5):814–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR et al (2005) Class III homeodomain- leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    CAS  PubMed  Google Scholar 

  • Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ (2006) Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:1008–1012

    PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajam MV (2012) Micro RNA interference: a new platform for crop protection. Cell Dev Biol 2:1–6

    Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Bettinger JC et al (2000) The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B (2012) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A 109:12817–12821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds A, Leake D, Boese Q, Scaringe S et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C et al (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    CAS  PubMed  Google Scholar 

  • Schwarz DS, Tomari Y, Zamore PD (2004) The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol 14:787–791

    CAS  PubMed  Google Scholar 

  • Song JJ, Liu J, Tolia NH, Schneiderman J et al (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10:1026–1032

    CAS  PubMed  Google Scholar 

  • Song JJ, Smith SK, Hannon GJ, Joshua Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    CAS  PubMed  Google Scholar 

  • Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15:173–183

    CAS  PubMed  Google Scholar 

  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB et al (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9:160

    PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated MicroRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of MicroRNAs in plant stress responses. Trends Plant Sci 17:196–203

    CAS  PubMed  Google Scholar 

  • Szittya G, Moxon S, Santos DM, Jing R et al (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593

    PubMed Central  PubMed  Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500

    CAS  PubMed  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19(3):175–182

    CAS  PubMed  Google Scholar 

  • Telfer A, Poethig RS (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125:1889–1898

    CAS  PubMed  Google Scholar 

  • Tretter EM, Alvarez JP, Eshed Y, Bowman JL (2008) Activity range of Arabidopsis small RNAs derived from different biogenesis pathways. Plant Physiol 147:58–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trindade I, Capitao C, Dalmay T, Fevereiro MP et al (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    CAS  PubMed  Google Scholar 

  • Valoczi A, Varallyay E, Kauppinen S, Burgyan J, Havelda Z (2006) Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant J 47:140–151

    CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C et al (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    CAS  PubMed  Google Scholar 

  • Vazquez F, Blevins T, Ailhas J, Boller T, Meins TJ (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 36:6429–6438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    CAS  PubMed  Google Scholar 

  • Vu TV, Choudhury NR, Mukherjee SM (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45

    CAS  PubMed  Google Scholar 

  • Wang Z (2009) MicroRNA interference technologies. Springer, Berlin

    Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ et al (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHDZIP target genes. Development 132:3657–3668

    CAS  PubMed  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    CAS  PubMed  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    PubMed Central  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Song N, Hu Z et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan KS, Yan S, Farooq A, Han A et al (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426:468–474

    PubMed  Google Scholar 

  • Yang L, Liu Z, Lu F, Dong A, Huang H (2006a) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    CAS  PubMed  Google Scholar 

  • Yang Z, Ebright YW, Yu B, Chen X (2006b) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2 ′ OH of the 3 ′ terminal nucleotide. Nucleic Acids Res 34:667–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Li D, Mao D, Liu X et al (2013a) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218

    CAS  PubMed  Google Scholar 

  • Yang L, Jue D, Li W, Zhang R et al (2013b) Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae Infection. PLoS One 8(8):e72840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae–inoculated cotton roots. PLoS One 7(4):e35765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran R, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105:10073–10078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    CAS  PubMed  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    PubMed Central  PubMed  Google Scholar 

  • Zhang W, Gao S, Zhou X, Chellappan P et al (2011a) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75:93–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Zhao H, Gao S, Wang WC et al (2011b) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi localized SNARE gene, MEMB12. Mol Cell 42:356–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J et al (2011c) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    CAS  PubMed  Google Scholar 

  • Zhang YC, Yu Y, Wang CY, Li ZY et al (2013) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31:848–852

    CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W et al (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    CAS  PubMed  Google Scholar 

  • Zhao JP, Jiang XL, Zhang BY, Su XH (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7(9):e44968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, Feng ZY, Zozomova-Lihová J, Wang JW (2013a) Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340:1097–1100

    CAS  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q et al (2013b) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu QH, Spriggs A, Matthew L, Fan L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Zhou Y, Castillo-González C, Lu A, Ge C et al (2013) Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat Struct Mol Biol 20:1106–1115

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the University Grants Commission, New Delhi, for the Special Assistance Programme and the Department of Science and Technology (DST), New Delhi, for the FIST and DU-DST PURSE program. The Senior Research Fellowship to MP by the Council of Scientific and Industrial Research, New Delhi, and INSPIRE fellowship to SY by DST are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchikatla Venkat Rajam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Pareek, M., Yogindran, S., Mukherjee, S.K., Rajam, M.V. (2015). Plant MicroRNAs: Biogenesis, Functions, and Applications. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_32

Download citation

Publish with us

Policies and ethics