Skip to main content

Micropropagation of Plants

  • Chapter
Plant Biology and Biotechnology

Abstract

Micropropagation is a rapid multiplication of a selected plant using in vitro culture techniques. In this chapter various aspects of micropropagation have been discussed. The propagation of selected plant through micropropagation would be useful for raising plantation using apical and nodal segment. They are best for micropropagation and mostly result in true to type plants. These segments upon the subsequent subcultures result in a number of multiple shoots. These multiple shoots on elongation allowed to root in vitro. After rooting, they are in vitro hardened and transferred to field. The potential of plant tissue culture is well recognized, as it increases agricultural production and generates rural employment. But the high cost of production on micropropagation is a major bottleneck. Low-cost protocol development can popularize this method. High multiplication rate, use of low-cost chemicals, high rooting and survival percentage, and use of ex vitro rooting method can minimize the expense of any protocol. Presently, both the developing and the developed countries require low-cost technologies to progressively reduce the cost of production. The performance of tissue plants generally better than cutting and seedling. Initially, some morphological changes occur in micropropagated plant, but in the course of time, they minimize. Somaclonal variation caused during callus cultures can be used to generate variants for hybridization. Variation in phenotype of plants produced in tissue culture can be characterized as either temporary or permanent. Temporary variation includes increased branching, greater susceptibility to disease, and lack of uniform response. Micropropagated plants need to be monitored to get long-term data for its growth, survival, yield, and disease attach under field condition as very limited information is available for many plants. In this chapter micropropagation of commercially important plants like Jatropha curcas, Eucalyptus, banana, and bamboo has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I, Mullner AE, Luschnig C (2010) Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci U S A 107:10308–10313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Assani A, Bakry F, Kerbellec F, Haicour R, Wenzel G, Foroughi-Wehr B (2003) Production of haploids from anther culture of banana [Musa balbisiana (BB)]. Plant Cell Rep 21:511–516

    CAS  PubMed  Google Scholar 

  • Badia NK (1982a) Eucalyptus rudis Endl.: Techniques de micropropagation par la culture de noeuds in vitro. In: Colloque International sur la Culture in vitro des Essences Forestieres, IUFRO. Association ForÄ•t-Cellulose, Nangis, pp 135–142

    Google Scholar 

  • Badia NK (1982b) Influence de la vitamine E sur la multiplication vegetative in vitro de 1 ‘Eucalyptus rudis Endl., de Larix x eurolepis Henry et de Quercus borealis Michx. Bull Rech Agron Gembloux 17:219–226

    CAS  Google Scholar 

  • Bell DT, Moezel PGV, Bennett IJ, McComb JA, Wilkins CF, Marshall SCB, Morgan AL (1993) Comparisons of growth of Eucalyptus camaldulensis from seeds and tissue culture: root, shoot and leaf morphology of 9-month-old plants grown in deep sand and sand over clay. For Ecol Manag 57:125–139

    Article  Google Scholar 

  • Berdasco M, Alca’ zar R, Garcı’a-Ortiz MV et al (2008) PromoterDNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One 3:e3306

    Article  PubMed Central  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Boulay M (1983) Micropropagation of frost resistant Eucalyptus. In: Proceedings of the workshop on Eucalyptus. California, Sacramento, USDA forest service general technical report PSW 69:102–107

    Google Scholar 

  • Burger DW (1987) In vitro micropropagation of Eucalyptus sideroxylon. HortScience 22:496–497

    CAS  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datta MM, Mukherjee P, Ghosh B, Jha TB (2007) In vitro clonal propagation of biodiesel plant (Jatropha curcas L.). Curr Sci 93:1438–1442

    CAS  Google Scholar 

  • Demissie AG, Lele SS (2010) Bioassay-assisted identification of phorbol ester from Jatropha curcas L., tissue culture. BioTechniques 1:1–7

    Google Scholar 

  • Feng S, Cokus SJ, Zhang X et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Nat Acad Sci USA 107:8689–8694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fraga MF, Esteller M (2002) DNA methylation: a profile of methods and applications. BioTechniques 33:632–649

    CAS  PubMed  Google Scholar 

  • Furze MJ, Cresswell CF (1985) Micropropagation of Eucalyptus grandis and nitens using tissue culture techniques. S Afr For J 135:20–23

    Google Scholar 

  • Gielis J, Oprins J (1998) The strategic role of biotechnology in mass scale production of woody bamboos. In: El Bassam N, Behl RK, Prochnow B (eds) Sustainable agriculture for food, energy and industry. James and James, London, pp 165–171

    Google Scholar 

  • Girijashankar V (2012) In vitro regeneration of Eucalyptus camaldulensis. Physiol Mol Biol Plants 18:79–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodger JQD, Woodrow IE (2010) The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea. Tree Physiol 30:285–296

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Mehta UJ, Mascarenhas AF (1983) A tissue culture method for rapid clonal propagation of mature trees of Eucalyptus torelliana and Eucalyptus camaldulensis. Plant Cell Rep 2:296–299

    Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien. Math.-Naturwiss. Kl Abt J 11:69–92

    Google Scholar 

  • Hartney VJ (1982) Vegetative propagation of Eucalyptus in vitro. Colloque International sur la Culture in vitro des Essences Forestieres, IUFRO. Association ForÄ•t-Cellulose, Nangis, pp 175–179

    Google Scholar 

  • Hartney VJ, Barker PK (1980) Vegetative propagation of Eucalyptus by tissue culture. IUFRO symposium and workshop on genetic improvement and production of fast growing tree SpSao Paulo, Brazil, pp 791–793

    Google Scholar 

  • Ishii K (1982) Isoenzyme polymorphism of peroxidase of Eucalyptus callus in relation to plant hormone contents. In: Fujiwara A (ed) Proceedings of the 5th International congress on plant tissue and cell culture. Tokyo, pp 215–216

    Google Scholar 

  • Knop W (1865) Quantitative Untersuchungen uber die Ernahrungsprozesse der Pflanzen. Landwirtsch Vers 7:93–107

    Google Scholar 

  • Kumar N, Reddy MP (2010) A plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Ann ApplBiol 156:367–375

    Article  CAS  Google Scholar 

  • Kumar S, Kumaria S, Tandon P (2010) Efficient in vitro plant regeneration protocol from leaf explant of Jatropha curcas L—a promising biofuel plant. J Plant Biochem Biotechnol 19:273–275

    Article  Google Scholar 

  • Lee KS, Zapata-Arias FJ, Brunner H, Afza R (1997) Histology of somatic embryo initiation and organogenesis from rhizome explants of Musa spp. Plant Cell Tiss Org Cult 51:1–8

    Article  Google Scholar 

  • Li K, Fu S, Zhan H, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of banana pseudostem. Bioresources 5:576–585

    CAS  Google Scholar 

  • Mascarenhas AF, Hazara S, Potdar U, Kulkarni DK, Gupta PK (1982) Rapid clonal multiplication of mature forest trees through tissue culture. In: Fujiwara A (ed) Proceedings of the 5th International Congress on plant tissue and cell culture. Tokyo, pp 719–720

    Google Scholar 

  • Mazumdar P, Basu A, Paul A, Mahanta C, Sahoo L (2010) Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens mediated transformation in Jatropha curcas L. S Afr J Bot 76:337–344

    Article  Google Scholar 

  • McComb JA, Bennett IJ (1982) Vegetative propagation of eucalypts: using tissue culture and its application to forest improvement in western Australia. In: Fujiwara A (ed) Proceedings of the 5th International Congress on plant tissue and cell culture. Tokyo, pp 721–722

    Google Scholar 

  • Mendes BMJ, Mendes FJ, Neto AT, Demetrio CGB, Puske OR (1996) Efficacy of banana plantlet production by micropropagation. Pesqui Agrop Bras 31:863–867

    Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nandwani D, Zehr U, Zehr BE, Barwale RB (2000) Mass propagation and ex vitro survival of banana cv. Barsrail through tissue culture. Gartenbauwissenschaft 65:237–240

    CAS  Google Scholar 

  • Nokoe S, Ortiz R (1998) Optimum plot sizes for banana trials. HortScience 33:130–132

    Google Scholar 

  • Purkayastha J, Sugla T, Paul A, Mazumdar P, Basu A, Solleti SK, Mohammad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 1:13–20

    Article  Google Scholar 

  • Rajore S, Batra A (2005) Efficient plant regeneration via shoot tip explant in Jatropha curcas L. J Plant Biochem Biotechnol 14:73–75

    Article  Google Scholar 

  • Rathore MS, Yadav P, Mastan SG, Prakash CR, Singh A, Agarwal PK (2014) Evaluation of genetic homogeneity in tissue culture regenerates of Jatropha curcas L. using flow cytometer and DNA-based molecular markers. Appl Biochem Biotechnol 172:298–310

    Article  CAS  PubMed  Google Scholar 

  • Reddy MP, Kumar N, Vijay Anand KG, Singh AH, Singh S (2008) Method for micropropagation of Jatrophacurcas plants from leaf explants. 2537/DEL/2008 – Patent filed

    Google Scholar 

  • Reddy MP, Singh AH, Singh S (2009) Genotype independent method for mass multiplication of Jatrophacurcas. 0657/DEL/2009 – Patent filed

    Google Scholar 

  • Roux LJJ, Staden JV (1991) Micropropagation of Eucalyptus species. Hortscience 26:199–200

    Google Scholar 

  • Shrivastava S, Banerjee M (2008) In vitro clonal propagation of physic nut (Jatropha curcas L): influence of additives. Int J Integr Biol 3:73–79

    CAS  Google Scholar 

  • Shrivastava S, Banerjee M (2009) Algal filtrate: a low cost substitute to synthetic growth regulators for direct organogenesis of embryo culture in Jatropha curcas (Ratanjyot). Acta Physiol Plant 31:1205–1212

    Article  Google Scholar 

  • Singh G, Shetty S (2011) Impact of tissue culture on agriculture in India invited review. Biotech Bioinforma Bioeng 1:147–158

    Google Scholar 

  • Singh A, Reddy M, Patolia JS (2008) An improved protocol for micropropagation of elite genotypes of Simmondsia chinensis (Link) Schneider. Biol Plant 52:538–542

    Article  CAS  Google Scholar 

  • Singh A, Reddy MP, Chikara J, Singh S (2010) A simple regeneration protocol from stem explants of Jatropha curcas – a biodiesel plant. Ind Crops Prod 31:209–213

    Article  CAS  Google Scholar 

  • Soomro R, Memon RA (2007) Establishment of callus and suspension culture in Jatropha curcas. Pak J Bot 39:2431–2441

    Google Scholar 

  • Thorpe T (2007) History of plant tissue culture. J Mol Micro Biotechnol 37:169–180

    CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kupier M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells. The Ronald Press, New York, p 238

    Google Scholar 

Download references

Acknowledgment

CSIR-CSMCRI Communication No. 054/2014 (as provided by BDIM). The author gratefully acknowledges the financial support from Ministry of New Renewable Energy (MNRE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesha Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, A. (2015). Micropropagation of Plants. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_16

Download citation

Publish with us

Policies and ethics