Skip to main content

Systems Biology: A New Frontier in Science

  • Chapter
Plant Biology and Biotechnology

Abstract

Systems biology is an emerging field with the potential of making significant contribution to human life and other living organisms. It helps to understand the entirety of life and elucidates basic principles behind the biological life. It captures the complexity of complex biological system and explains the relationship between every gene, transcript, protein, and phenotype. Advancements in functional and structural genomics have enabled the molecular biologists to come a long way toward understanding molecular constituents of the cell. Yet, we fail to understand how organisms function. To date, we face lot of problems in complete understating of several diseases caused to plants, animals, and other productive organisms. To understand underlying biological processes and to find out potential new drug targets, we need to understand complete molecular network systems. Systems biology is an approach based on interdisciplinary fields which focuses on systematic study of complex biological systems using new perspective of holism instead of conventional reductionism. Systems biology follows a holistic approach to understand life by using interactomics, genomics, transcriptomics, metabolomics, proteomics, and informational science. In this chapter, we explained different components of systems biology and its connections with other disciplines. In the future, this integrated science can answer several devastating diseases and mysteries in biological systems. They can be readily tested by computer based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A (2005) Systems biology: its practice and challenges. Cell 121(4):511–513

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • Barrera LO, Ren B (2006) The transcriptional regulatory code of eukaryotic cells–insights from genome-wide analysis of chromatin organization and transcription factor binding. Curr Opin Cell Biol 18(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Bassett DE Jr, Basrai MA, Connelly C et al (1996) Exploiting the complete yeast genome sequence. Curr Opin Genet Dev 6(6):763–766

    Article  CAS  PubMed  Google Scholar 

  • Bhalla US (2003) Understanding complex signaling networks through models and metaphors. Prog Biophys Mol Biol 81(1):45–65

    Article  CAS  PubMed  Google Scholar 

  • Bhalla R, Narasimhan K, Swarup S (2005) Metabolomics and its role in understanding cellular responses in plants. Plant Cell Rep 24(10):562–571

    Article  CAS  PubMed  Google Scholar 

  • Bischof JM, Gillen AE, Song L et al (2013) A genome-wide analysis of open chromatin in human epididymis epithelial cells reveals candidate regulatory elements for genes coordinating epididymal function. Biol Reprod 89(4):104

    Article  PubMed Central  PubMed  Google Scholar 

  • Bork P, Serrano L (2005) Towards cellular systems in 4D. Cell 121(4):507–509

    Article  CAS  PubMed  Google Scholar 

  • Bray D, Bourret RB, Simon MI (1993) Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell 4(5):469–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brazma A, Vilo J (2000) Gene expression data analysis. FEBS Lett 480(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Bruggeman FJ, Hornberg JJ, Boogerd FC, Westerhoff HV (2007) Introduction to systems biology. EXS 97:1–19

    CAS  PubMed  Google Scholar 

  • Chen Y, Xu D (2003) Computational analyses of high-throughput protein-protein interaction data. Curr Protein Pept Sci 4(3):159–181

    Article  CAS  PubMed  Google Scholar 

  • Claverie JM (1999) Computational methods for the identification of differential and coordinated gene expression. Hum Mol Genet 8(10):1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Cleary JG, Braithwaite R, Gaastra K et al (2014) Joint variant and de novo mutation identification on pedigrees from high-throughput sequencing data. J Comput Biol J Comput Mol Cell Biol 21(6):405–419

    Article  CAS  Google Scholar 

  • Dall’Olio GM, Bertranpetit J, Wagner A, Laayouni H (2014) Human genome variation and the concept of genotype networks. PLoS One 9(6):e99424

    Article  PubMed Central  PubMed  Google Scholar 

  • Eungdamrong NJ, Iyengar R (2004) Modeling cell signaling networks. Biol Cell 96(5):355–362, under the auspices of the European Cell Biology Organization

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gianchandani EP, Brautigan DL, Papin JA (2006) Systems analyses characterize integrated functions of biochemical networks. Trends Biochem Sci 31(5):284–291

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1991) Towards a paradigm shift in biology. Nature 349(6305):99

    Article  CAS  PubMed  Google Scholar 

  • Harris TW, Baran J, Bieri T et al (2014) WormBase 2014: new views of curated biology. Nucleic Acids Res 42(Database issue):D789–D793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945

    Article  Google Scholar 

  • Joshi A, Palsson BO (1990) Metabolic dynamics in the human red cell. Part IV–data prediction and some model computations. J Theor Biol 142(1):69–85

    Article  CAS  PubMed  Google Scholar 

  • Kirschner MW (2005) The meaning of systems biology. Cell 121(4):503–504

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470(7333):187–197

    Article  CAS  PubMed  Google Scholar 

  • Levine MT, Malik HS (2011) Learning to protect your genome on the fly. Cell 147(7):1440–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy J (1994) Sequencing the yeast genome: an international achievement. Yeast 10(13):1689–1706

    Article  CAS  PubMed  Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282(5389):662, 679–82

    Article  CAS  PubMed  Google Scholar 

  • Mello BA, Tu Y (2003) Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys J 84(5):2943–2956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morton-Firth CJ, Shimizu TS, Bray D (1999) A free-energy-based stochastic simulation of the tar receptor complex. J Mol Biol 286(4):1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Osnabrugge RL, Head SJ, Zijlstra F et al (2014) A systematic review and critical assessment of 11 discordant meta-analyses on reduced-function CYP2C19 genotype and risk of adverse clinical outcomes in clopidogrel users. Genet Med Off J Am Coll Med Genet 17: 3–11

    Google Scholar 

  • Rao VS, Srinivas K, Sujini GN, Kumar GN (2014) Protein-protein interaction detection: methods and analysis. Intl J Proteome 2014:147648

    Google Scholar 

  • Sakaki Y (2005) Human genome project and its impact on biology and medicine. Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme 50(16 Suppl):2047–2052

    Google Scholar 

  • Schmutz J, Wheeler J, Grimwood J et al (2004) Quality assessment of the human genome sequence. Nature 429(6990):365–368

    Article  CAS  PubMed  Google Scholar 

  • Sherlock G (2000) Analysis of large-scale gene expression data. Curr Opin Immunol 12(2):201–205

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H (2009) The bacterial pan-genome and reverse vaccinology. Genome Dyn 6:35–47

    CAS  PubMed  Google Scholar 

  • van der Velde KJ, de Haan M, Zych K et al (2014) WormQTLHD–a web database for linking human disease to natural variation data in C. elegans. Nucleic Acids Res 42(Database issue):D794–D801

    Article  PubMed Central  PubMed  Google Scholar 

  • Weatherall D (1999) From genotype to phenotype: genetics and medical practice in the new millennium. Philos Trans R Soc Lond B Biol Sci 354(1392):1995–2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weckwerth W (2011) Green systems biology – from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteome 75(1):284–305

    Article  CAS  Google Scholar 

  • Weng G, Bhalla US, Iyengar R (1999) Complexity in biological signaling systems. Science 284(5411):92–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ (2008) A navigator for human genome epidemiology. Nat Genet 40(2):124–125

    Article  CAS  PubMed  Google Scholar 

  • Yugi K, Tomita M (2004) A general computational model of mitochondrial metabolism in a whole organelle scale. Bioinformatics 20(11):1795–1796

    Article  CAS  PubMed  Google Scholar 

  • Zagulski M, Herbert CJ, Rytka J (1998) Sequencing and functional analysis of the yeast genome. Acta Biochim Pol 45(3):627–643

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Sagurthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sagurthi, S.R., Setti, A., Pawar, S.C. (2015). Systems Biology: A New Frontier in Science. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_14

Download citation

Publish with us

Policies and ethics