Skip to main content

Abstract

The first objective of this chapter is to review how climate change and climate variability may affect livestock diseases’ occurrences while emphasizing how little the knowledge on the links between livestock diseases and climate change is. The review of the literature shows that most of the investigated diseases are zoonotic ones with few specific to livestock and, moreover, these diseases appeared to be dramatically affected by climate variability rather than by ongoing climate change. A second objective of this chapter is to introduce some new modelling tools that can help predict diseases’ occurrences in space and in time in relation to climate variability and change, namely, environmental niche modelling, epidemiological modelling using R0 map and teleconnection modelling. A working example on cattle trypanosomiasis in China is given to illustrate teleconnection modelling by using data from the World Organization for Animal Health (OIE). The conclusion of this chapter stresses three points: the need to consider the entangled linkages between ecosystems, society and health of animals and humans; the need of elaborated scenarios of livestock diseases linked to climate change and variability, which necessitates to develop and improve the recording of livestock diseases; and the need to incorporate climate-mediated physiological responses into the programs that manage breeding genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science 341(6145):514–519. doi:10.1126/science.1239401

    Article  CAS  Google Scholar 

  • Anderson J, Barrett T, Scott GR (1996) Manual of the diagnosis of rinderpest. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Anyamba A, Linthicum KJ, Mahoney R, Tucker CJ, Kelley PW (2002) Mapping potential risk of rift valley fever outbreaks in African savannas using vegetation index time series data. Photogramm Eng Remote Sens 68:137–145

    Google Scholar 

  • Anyamba A, Linthicum KJ, Small JL, Collins KM, Tucker CJ, Pak EW, Britch EW, Eastman SC, Pinzon JR, Russell JE E, Russell KL (2012) Climate teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl Trop Dis 6(1):e1465. doi:10.1371/journal.pntd.0001465

    Article  Google Scholar 

  • Band-Bo BA, Kebkiba B, Nadjilem D (2013) Facteurs favorisant l’apparition de la maladie de Newcastle au Tchad. J Appl Biol Sci 70:5591–5598

    Google Scholar 

  • Baylis M, Morse AP (2012) Disease, human and animal health and environmental change. In: Matthews JA (ed) The SAGE handbook of environmental change. Sage, London. [Online] dx.doi.org/10.4135/9781446253052

  • Baylis M, Mellor PS, Meiswinkel R (1999) Horse sickness and ENSO in South Africa. Nature 397:574

    Article  CAS  Google Scholar 

  • Brown JD, Swayne DE, Cooper RJ, Burns RE, Stallknecht DE (2007) Persistence of H5 and H7 avian influenza viruses in water. Avian Dis 51:285–289

    Article  Google Scholar 

  • Cohen M (2000) Changing patterns of infectious disease. Nature 406(6797):762–767

    Article  CAS  Google Scholar 

  • Cook G (1992) Effect of global warming on the distribution of parasitic and other infectious diseases: a review. J R Soc Med 85:688–691

    CAS  Google Scholar 

  • Cook T, Folli M, Klinck J, Ford S, Miller J (1998) The relationship between increasing surface water temperature and the northward spread of Perkinsus marinus disease epizootics in oysters. Estuar Coast Shelf Sci 40:587–597

    Article  Google Scholar 

  • Davies F, Linthicum K, James A (1985) Rainfall and epizootic Rift Valley fever. Bull World Health Organ 63:941–943

    CAS  Google Scholar 

  • de la Rocque S, Morand S, Hendrix G (eds) (2008) Climate change and pathogens. Rev Sci Tech Off Int Epizoot 27(2):339–354

    Google Scholar 

  • Dobson A (2009) Climatic variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90:920–927

    Article  Google Scholar 

  • Donaldson AI (1972) The influence of relative humidity on the aerosol stability of different strains of foot-and-mouth disease virus suspended in saliva. J Gen Virol 15:25–33

    Article  CAS  Google Scholar 

  • Fox NJ, Marion G, Davidson RS, White PCL, Hutchings MR (2012) Livestock helminths in a changing climate: approaches and restrictions to meaningful predictions. Animals 2:93–107

    Article  Google Scholar 

  • Gagnon AS, Bush ABG, Smoyer-Tomic KE (2001) Dengue epidemics and the El Nino Southern Oscillation. Clim Res 19:35–43

    Article  Google Scholar 

  • Gagnon AS, Smoyer-Tomic KE, Bush ABG (2002) The El Nino Southern Oscillation and malaria epidemics in South America. Int J Biometeorol 46:81–89

    Article  Google Scholar 

  • Gale P, Adkin A, Drew T, Wooldridge M (2008) Predicting the impact of climate change on livestock disease in Great Britain. Vet Rec 162:214–215

    Article  CAS  Google Scholar 

  • Gale P, Drew T, Phipps LP, David G, Wooldridge M (2009) The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J Appl Microbiol 106:1409–1423

    Article  CAS  Google Scholar 

  • Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI (2010) Climate change and the global malaria recession. Nature 465:342–344

    Article  CAS  Google Scholar 

  • Greer A, Ng V, Fisman D (2008) Climate change and infectious diseases in North America: the road ahead. Can Med Assoc J 178:715–722

    Google Scholar 

  • Guis H, Caminade C, Calvete C, Morse AP, Tran A, Baylis M (2011) Integration of climate and disease models gives mechanistic insight into vector-borne disease emergence. J R Soc Interface 9:339–350

    Article  Google Scholar 

  • Hales S, Woodward A (2003) Climate change will increase demands on malaria control in Africa. Lancet 362:1775–1776

    Article  Google Scholar 

  • Hall HTB (1988) Diseases and parasites of livestock in the tropics. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Ecology – climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  Google Scholar 

  • Harvell CD, Jordan-Dahlgren E, Merkel S, Raymundo L, Rosenberg E, Smith G, Weil E, Willis B (2007) Coral disease, environmental drivers and the balance between coral and microbial associates. Oceanography 20:58–81

    Article  Google Scholar 

  • Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife disease: when does the host matter the most? Ecology 90:912–920

    Article  Google Scholar 

  • Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW (2002) Climate change and the resurgence of malaria in the East African highlands. Nature 415:905–909

    Article  CAS  Google Scholar 

  • Hsu SM, Yen AMF, Chen THH (2008) The impact of climate on Japanese encephalitis. Epidemiol Infect 136:980–987

    CAS  Google Scholar 

  • Hubálek Z (2005) North Atlantic weather oscillation and human infectious diseases in the Czech Republic, 1951–2003. Eur J Epidemiol 20:263–272

    Article  Google Scholar 

  • Kovats RS (2000) El Nino and human health. Bull World Health Organ 78:1127–1135

    CAS  Google Scholar 

  • Kovats RS, Campbell-Lendrum DH, McMichael AJ, Woodward A, Cox JS (2001) Early effects of climate change: do they include changes in vector-borne disease? Philos Trans R Soc B 356:1057–1068

    Article  CAS  Google Scholar 

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    Article  Google Scholar 

  • Linthicum KJ, Bailey CL, Davies G, Tucker CJ (1987) Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery. Science 235:1656–1659

    Article  CAS  Google Scholar 

  • Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, Peters CJ (1999) Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285:397–400

    Article  CAS  Google Scholar 

  • Lips KR, Diffendorfer J, Mendelson JR, Sears MW (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6:e72

    Article  Google Scholar 

  • Martens P (2002) Health transitions in a globalising world: towards more disease or sustained health? Futures 37(7):635–648

    Article  Google Scholar 

  • Martin V, Chevalier V, Ceccato P, Anyamba A, DeSimone L, Lubroth J, de La Rocque S, Domenech J (2008) The impact of climate change on the epidemiology and control of Rift valley fever. Rev Sci Tech 27:413–426

    CAS  Google Scholar 

  • McIntyre KM, Setzkorn C, Baylis M, Waret-Szkuta A, Caminade C, Morse AP, Akin S-A, Huynen M, Martens P, Morand S (2010) Impact of climate change on human and animal health. Vet Rec 167(15):586

    Article  CAS  Google Scholar 

  • McMichael AJ (2004) Environmental and social influences on emerging infections. Philos Trans R Soc B 359(1447):1049–1058

    Article  CAS  Google Scholar 

  • McMichael AJ, Woodruff R (2005) Detecting the health effects of environmental change: scientific and political challenge. EcoHealth 2(1):1–3

    Article  Google Scholar 

  • Morand S, Guégan JF (2008) How the biodiversity sciences may aid biological tools and ecological engineering to assess the impact of climatic changes. Rev Sci Tech Off Int Epizoot 27(2):355–366

    CAS  Google Scholar 

  • Morand S, Owers K, Waret-Szkuta A, McIntyre KM, Baylis M (2013) Climate variability and outbreaks of infectious diseases in Europe. Nat Sci Rep 3:1774

    CAS  Google Scholar 

  • Mullins J, Lukhnova L, Aikimbayev A, Pazilov Y, Van Ert M, Blackburn JK (2011) Ecological niche modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan. BMC Ecol 11:32. doi:10.1186/1472-6785-11-32

    Article  Google Scholar 

  • Murdock CC, Paaijmans KP, Cox-Foster D, Read AF, Thomas MB (2012) Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat Rev Microbiol 10:869–876

    Article  CAS  Google Scholar 

  • Nakazawa Y, Williams RAJ, Peterson AT, Mead PS, Kugeler KJ, Petersen JM (2010) Ecological niche modeling of Francisella tularensis subspecies and clades in the United States. Am J Trop Med Hyg 82:912–918

    Article  Google Scholar 

  • Parker R, Mathis C, Looper M, Sawyer J (2002) Anthrax and livestock. Guide B-120: Cooperative Extension Service. College of Agriculture and Home Economics, University of New Mexico, Las Cruces

    Google Scholar 

  • Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K (2008) Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc R Soc Lond B 275:123–132

    Article  CAS  Google Scholar 

  • Pascual M, Dobson AP, Bouma MJ (2009) Underestimating malaria risk under variable temperatures. Proc Natl Acad Sci U S A 106:13645–13646

    Article  CAS  Google Scholar 

  • Patz J (2002) A human disease indicator for the effects of recent global climate change. Proc Natl Acad Sci U S A 99(20):12506–12508

    Article  CAS  Google Scholar 

  • Patz JA, Kovats RS (2002) Hotspots in climate change and human health. Br Med J 325:1094–1098

    Article  Google Scholar 

  • Paz S, Bisharat N, Paz E, Kidar O, Cohen D (2007) Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ Res 103:390–396

    Article  CAS  Google Scholar 

  • Peterson AT, Sánchez-Cordero V, Beard CB, Ramsey JM (2002) Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg Infect Dis 8:662–667

    Article  Google Scholar 

  • Peterson AT, Bauer JT, Mills JN (2004) Ecologic and geographic distribution of filovirus disease. Emerg Infect Dis 10:40–47

    Article  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merinoviteri A, Puschendorf R, Ron SR, Sanchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  Google Scholar 

  • Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PPC, Baylis M (2005) Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3:171–182

    Article  CAS  Google Scholar 

  • Randolph SE (2004) Evidence that climate change has caused ‘emergence’ of tick- borne diseases in Europe? Int J Med Microbiol 293:5–15

    Google Scholar 

  • Rapport D, Costanza R, Epstein PR, Gaudet C, Levins R (1998) Ecosystem health. Blackwell Science, Oxford, 372

    Google Scholar 

  • Rapport D, Böhm G, Buckingham D, Cairns J, Costanza R, Karr JR, de Kruijf HAM, Levins R, McMichael AJ, Nielson NO, Whitford WG (1999) Ecosystem health: the concept, the ISEH, and the important tasks ahead. Ecosyst Health 2:82–90

    Article  Google Scholar 

  • Reiter P, Thomas CJ, Atkinson PM, Hay SI, Randolph SE, Rogers DJ, Shanks GD, Snow RW, Spielman A (2004) Global warming and malaria: a call for accuracy. Lancet Infect Dis 4:323–324

    Article  Google Scholar 

  • Rogers DJ, Packer MJ (1993) Vector-borne diseases, models, and global change. Lancet 342:1282–1284

    Article  CAS  Google Scholar 

  • Rogers DJ, Randolph SE (2003) Studying the global distribution of infectious diseases using GIS and RS. Nat Rev Microbiol 1:231–237

    Article  CAS  Google Scholar 

  • Rogers DJ, Randolph SE (2006) Climate change and vector-borne diseases. Adv Parasitol 62:345–381

    Article  CAS  Google Scholar 

  • Rohr JR, Raffel TR, Romansic J, McCallum H, Hudson PJ (2008) Evaluating the links between climate, disease spread, and amphibian declines. Proc Natl Acad Sci U S A 45:17436–17441

    Article  Google Scholar 

  • Rosenthal J (2009) Climate change and the geographic distribution of infectious diseases. EcoHealth 6:489–495

    Article  Google Scholar 

  • Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infect Dis 9:365–375

    Article  Google Scholar 

  • Sutherst R (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17(1):136–173

    Article  Google Scholar 

  • Wittmann EJ, Baylis M (2000) Climate change: effects on culicoides-transmitted viruses and implications for the UK. Vet J 160:107–117

    Article  CAS  Google Scholar 

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO – how does 1997/98 rank? Weather 53:315–324

    Article  Google Scholar 

  • Wosu LO, Okiri JE, Enwezor PA (1992) Optimal time for vaccination against peste des petits ruminants (PPR) disease in goats in the humid tropical zone in southern Nigeria. In: Rey B, Lebbie SHB, Reynolds L (eds) Small ruminant research and development in Africa: proceedings of the First Biennial Conference of the African Small Ruminant Research Network. International Laboratory for Research in Animal Diseases (ILRAD), Nairobi

    Google Scholar 

  • Zell R (2004) Global climate change and the emergence/re-emergence of infectious diseases. Int J Med Microbiol 293:16–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Morand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Morand, S. (2015). Impact of Climate Change on Livestock Disease Occurrences. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_8

Download citation

Publish with us

Policies and ethics