Skip to main content

Overview on Adaptation, Mitigation and Amelioration Strategies to Improve Livestock Production Under the Changing Climatic Scenario

  • Chapter

Abstract

Livestock production is thought to be adversely affected by detrimental effects of extreme climatic conditions. Consequently, adaptation, mitigation and amelioration of detrimental effects of extreme climates have played a major role in combating the climatic impact in livestock production. While measures to reduce the growth of greenhouse gas emissions are an important response to the threat of climate change, adaptation to climate change will also form a necessary part of the response. The salient adaptation strategies are developing less sensitive breeds, improving water availability, improving animal health, promoting women empowerment, developing various policy issues, establishing early warning systems and developing suitable capacity building programmes for different stakeholders. Developing adaptation strategies is therefore an important part of ensuring that countries are well prepared to deal with any negative impacts that may occur as a result of climate change. The integration of new technologies into the research and technology transfer systems potentially offers many opportunities to further the development of climate change adaptation strategies. Adapting to climate change and reducing GHG emissions may require significant changes in production technology and farming systems that could affect productivity. Many viable opportunities exist for reducing CH4 emissions from enteric fermentation in ruminant animals and from livestock manure management facilities. To be considered viable, these emission reduction strategies must be consistent with the continued economic viability of the producer and must accommodate cultural factors that affect livestock ownership and management. This chapter also elaborates on ameliorative strategies that should be given consideration to prevent economic losses incurred due to environmental stresses on livestock productivity. Reducing the impact of climatic stresses on livestock production requires multidisciplinary approaches which emphasise animal nutrition, housing and animal health. Therefore, emphasis should be given to all three aspects of adaptation, mitigation and amelioration strategies to sustain livestock production under the changing climate scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abecia L, Toral PG, Martín-García AI, Martínez G, Tomkins NW, Molina-Alcaide E, Newbold CJ, Yaňez-Ruiz DR (2012) Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. J Dairy Sci 95:2027–2036

    CAS  Google Scholar 

  • Anderson RC, Callaway TR, Van Kessel JA, Jung YS, Edrington TS, Nisbet DJ (2003) Effect of select nitrocompounds on ruminal fermentation; an initial look at their potential to reduce economic and environmental costs associated with ruminal methanogenesis. Bioresour Technol 90:59–63

    CAS  Google Scholar 

  • Antle JM (2010) Asymmetry, partial moments, and production risk. Am J Agric Econ 92(5):1294–1309

    Google Scholar 

  • Appuhamy JADRN, Strathe AB, Jayasundara S, Wagner-Riddle C, Dijkstra J, France J, Kebreab E (2013) Antimethanogenic effects of monensin in dairy and beef cattle: a meta-analysis. J Dairy Sci 96:5161–5173

    Google Scholar 

  • Arieli A, Adin G, Bruckental I (2006) The effect of protein intake on performance of cows in hot environmental temperatures. J Dairy Sci 87:620–629

    Google Scholar 

  • Asa R, Tanaka A, Uehara A, Shinzato I, Toride Y, Usui N, Hirakawa K, Takahashi J (2010) Effects of protease-resistant antimicrobial substances produced by lactic acid bacteria on rumen methanogenesis. Asian Aust J Anim Sci 23:700–707

    CAS  Google Scholar 

  • Baumgard LH, Rhoads RP (2007) The effects of hyperthermia on nutrient partitioning. Proc Cornell Nutr Conf 93–104

    Google Scholar 

  • Beauchemin KA, McGinn SM (2006) Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J Anim Sci 84:1489–1496

    CAS  Google Scholar 

  • Beauchemin KA, McGinn SM, Martinez TF, McAllister TA (2007) Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J Anim Sci 85:1990–1996

    CAS  Google Scholar 

  • Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agric 48:21–27

    CAS  Google Scholar 

  • Beever DE, Cammell SB, Sutto JD, Spooner MC, Haines MJ, Harland JI (1989) Effects of concentrate type on energy utilization in lactating dairy cows. In: Van der Honing Y, Close WH (eds) Energy metabolism of farm animals, EAAP Publication no. 43. Pudoc, Wageningen, pp 33–36

    Google Scholar 

  • Benchaar C, Pomar C, Chiquette J (2001) Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can J Anim Sci 81:563–574

    Google Scholar 

  • Bergquist R, Rinaldi L (2010) Health research based on geospatial tools: a timely approach in a changing environment. J Helminthol 84:1–11

    Google Scholar 

  • Bhatta R, Saravanan M, Baruah L, Sampath KT (2012) Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves. J Sci Food Agric 92:2929–2935

    CAS  Google Scholar 

  • Bhatta R, Enishi O, Yabumoto Y, Nonaka I, Takusari N, Higuchi K, Tajima K, Takenaka A, Kurihara M (2013a) Methane reduction and energy partitioning in goats fed two concentrations of tannin from Mimosa spp. J Agric Sci (Cambridge) 151:119–128

    CAS  Google Scholar 

  • Bhatta R, Saravanan M, Baruah L, Dhali A, Kolte A, Prasad CS (2013b) Effect of graded levels of tropical leaves containing-secondary metabolites on rumen fermentation pattern protozoa population and methanogenesis in vitro. Adv Anim Biosci 4(2):307

    Google Scholar 

  • Blaxter KL, Clapperton JL (1965) Prediction of the amount of methane produced by ruminants. Br J Nutr 19:511–522

    CAS  Google Scholar 

  • Block J, Hansen PJ (2007) Interaction between season and culture with insulin-like growth factor-1 on survival of in vitro produced embryos following transfer to lactating dairy cows. Theriogenology 67:1518–1529

    CAS  Google Scholar 

  • Boadi D, Wittenburg KM, Scott SL, Burton D, Buckley K, Small JA, Ominski KH (2004) Effect of low and high forage diets on enteric and manure pack GHG emissions from a feedlot. Can J Anim Sci 84:445

    Google Scholar 

  • Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 176:78–93

    CAS  Google Scholar 

  • Bowman RL, Croucher JC, Picard MT (1992) Assessment of the prefeasibility of strategic supplementation as an opportunity for reducing methane emissions in Gujarat, India, A.T, International, prepared for the Global change Division, U.S. Environmental protection agency, Washington, DC

    Google Scholar 

  • Brask M, Lund P, Weisbjerg MR, Hellwing AL, Poulsen M, Larsen MK, Hvelplund T (2013) Methane production and digestion of different physical forms of rapeseed as fat supplement in dairy cows. J Dairy Sci 96:2356–2365

    CAS  Google Scholar 

  • Brown EG, Anderson RC, Carstens GE, Gutierrez-Baňuelos H, McReynolds JL, Slay LJ, Callaway TR, Nisbet DJ (2011) Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle. Anim Feed Sci Technol 166–167:275–281

    Google Scholar 

  • Buddle BM, Denis M, Attwood GT, Altermann E, Janssen PH, Ronimus RS, Pinares-Patiño CS, Muetzel S, Wedlock DN (2011) Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet J 188:11–17

    CAS  Google Scholar 

  • Busquet M, Calsamiglia S, Ferret S, Kamel C (2005) Screening for the effects of natural plant extracts and secondary plant metabolites on rumen microbial fermentation in continuous culture. Anim Feed Sci Technol 123:597–613

    Google Scholar 

  • Callaway TR, Alexandra MS, Carneiro De Melo, Russell JB (1997) The effect of nisin and monensin on ruminal fermentations in vitro. Curr Microbiol 35:90–96

    CAS  Google Scholar 

  • Carro MD, Ranilla MJ (2003) Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br J Nutr 89:181–188

    CAS  Google Scholar 

  • Carro MD, Lebzien P, Rohr K (1992) Influence of yeast culture on the in vitro fermentation (Rusitec) of diets containing variable portions of concentrates. Anim Feed Sci Technol 37:209–220

    Google Scholar 

  • Castillo C, Benedito JL, Méndez J, Pereira V, López-Alonso M, Miranda M, Hernández J (2004) Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol 115:101–116

    CAS  Google Scholar 

  • Chaucheyras F, Fonty G, Bertin G, Gouet P (1995) In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol 61:3466–3469

    CAS  Google Scholar 

  • Chaucheyras F, Walker ND, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145:5–26

    Google Scholar 

  • Chaucheyras-Durand F, Walker ND, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145:5–26

    CAS  Google Scholar 

  • Chen H, Hoocver DG (2003) Bacteriocins and their food applications. CRFSFS 12:82–99

    Google Scholar 

  • Chianese DS, Rotz CA, Richard TL (2009) Whole farm greenhouse gas emissions. A review with application to a Pennsylvania dairy farm. Appl Eng Agric 25(3):431–442

    Google Scholar 

  • Clark H, Wright AD, Joblin K, Molano G, Chavanagh A, Peters J (2004) Field testing and Australian developed antimethanogen vaccine in growing ewe lambs. In: Proceedings of the workshop on the science of atmospheric trace gases, Wellington, 18–19 Mar 2004, pp 107–108

    Google Scholar 

  • Clemens J, Ahlgrimm HJ (2001) Greenhouse gases from animal husbandry and mitigation options. Nutr Cycl Agroecosyst 60:287–300

    Google Scholar 

  • Cook SR, Maiti PK, Chaves AV, Benchaar C, Beauchemin KA, McAllister TA (2008) Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: in vitro assessment of their effects. Aust J Exp Agric 48:260–264

    CAS  Google Scholar 

  • De Mazancourt C, Loreau M, Abbadie L (1998) Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79:2242–2252

    Google Scholar 

  • Demeyer D, Fievez V (2000) Ruminants et environment: la méthanogénèse. Ann Zootech 49:95–112

    CAS  Google Scholar 

  • Deressa T, Hassan R, Poonyth D (2005) Measuring the economic impact of climate change on South Africa’s sugarcane growing regions. Agrekon 44(4):524–542

    Google Scholar 

  • Ding X, Long R, Zhang Q, Huang X, Guo X, Mi J (2012) Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil. Trop Anim Health Prod 44:1541–1545

    Google Scholar 

  • Dohme F, Machmüller A, Wasserfallen A, Kreuzer M (2000) Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can J Anim Sci 80:473–484

    CAS  Google Scholar 

  • Doreau M, Ferlay A (1995) Effect of dietary lipids on nitrogen metabolism in the lumen: a review. Livest Prod Sci 43:97–110

    Google Scholar 

  • Doreau M, Jouany JP (1998) Effect of a Saccharomyces cerevisiae culture on nutrient digestion in lactating dairy cows. J Dairy Sci 81:3214–3221

    CAS  Google Scholar 

  • Eckard RJ, Grainger C, De Klein CAM (2010) Options for the abatement of methane and nitrous oxide from ruminant production – a review. Livest Sci 130:47–56

    Google Scholar 

  • Ellis JL, Dijkstra J, Bannink A, Kebreab E, Hook SE, Archibeque S, France J (2012) Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain fed beef cattle. J Anim Sci 90:2717–2726

    CAS  Google Scholar 

  • FAO (2012) Balanced feeding for improving livestock productivity – increase in milk production and nutrient use efficiency and decrease in methane emission. In: Garg MR (ed) FAO Anim Prod Health Pap No. 173. Rome. 1080/00330124.2014.921017 (2014)

    Google Scholar 

  • Foley PA, Kenny DA, Callan JJ, Boland TM, O’Mara FP (2009) Effect of dl-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle. J Anim Sci 87:1048–1057

    CAS  Google Scholar 

  • Fox NJ, Marion G, Davidson RS, White PCL, Hutchings MR (2012) Livestock helminths in a changing climate: approaches and restrictions to meaningful predictions (review). Animals 2:93–107

    Google Scholar 

  • Francis G, Kerem Z, Makkar HSP, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:687–695

    Google Scholar 

  • Friedman E, Voet H, Reznikov D, Dagoni I, Roth Z (2011) Induction of successive follicular waves by gonadotropin-releasing hormone and prostaglandin F2α to improve fertility of high-producing cows during the summer and autumn. J Dairy Sci 94:2393–2402

    CAS  Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Goel G, Makkar HPS (2012) Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 44:729–739

    Google Scholar 

  • Goel G, Makkar HPS, Becker K (2008) Changes in microbial community, structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J Appl Microbiol 105:770–777

    CAS  Google Scholar 

  • Gómez JA, Tejido ML, Carro MD (2005) Mixed rumen microorganisms growth and rumen fermentation of two diets in RUSITEC fermenters: influence of disodium malate supplementation. Br J Nutr 93:479–484

    Google Scholar 

  • Gutierrez-Banuelos H, Anderson RC, Carstens GE, Slay LJ, Ramlachan N, Horrocks SM, Callaway TR, Edrington TS, Nisbet DJ (2007) Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product. Anaerobe 13:21–31

    CAS  Google Scholar 

  • Hahn GL (1981) Housing and management to reduce climatic impacts on livestock. J Anim Sci 52:175–186

    CAS  Google Scholar 

  • Haisan J, Sun Y, Beauchemin K, Guan L, Duval S, Barreda DR, Oba M (2013) Effect of feeding 3-nitrooxypropanol on methane emissions and productivity of lactating dairy cows. Adv Anim Biosci 4(2):260

    Google Scholar 

  • Hamano Y (2012) Alleviative effects of a-lipoic acid supplementation on acute heat stress-induced thermal panting and the level of plasma nonesterified fatty acids in hypothyroid broiler chickens. Br Poult Sci 53:125–133

    CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotropic bacteria. Microbiol Rev 60(2):439–471

    CAS  Google Scholar 

  • Hatayama T, Asai Y, Wakatsuki T, Kitamura T, Imahara H (1993) Regulation of hsp70 synthesis induced by cupric sulfate and zinc sulfate in thermotolerant HeLa cells. J Biochem (Tokyo) 114:592–597

    CAS  Google Scholar 

  • Hegarty RS (2001) Strategies for mitigating methane emissions from livestock – Australian options and opportunities. In: 1st international conference on GHGes and animal agriculture, Obihiro, pp 31–34

    Google Scholar 

  • Hollmann M, Beede DK (2012) Comparison of effects of dietary coconut oil and animal fat blend on lactational performance of Holstein cows fed a high-starch diet. J Dairy Sci 95:1484–1499

    CAS  Google Scholar 

  • Hook SE, Northwood KS, Wright AD, McBride BW (2009) Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 75:374–380

    CAS  Google Scholar 

  • Hristov AN, Ivan M, Neill L, McAllister TA (2003) A survey of potential bioactive agents for reducing protozoal activity in vitro. Anim Feed Sci Technol 105:163–184

    CAS  Google Scholar 

  • Hristov AN, Vander Pol M, Agle M, Zaman S, Schneider C, Ndegwa P, Vaddella VK, Johnson K, Shingfield KJ, Karnati SKR (2009) Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows. J Dairy Sci 92:5561–5582

    CAS  Google Scholar 

  • Hristov AN, Lee C, Cassidy T, Long M, Heyler K, Corl B, Forster R (2011) Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. J Dairy Sci 94:382–395

    CAS  Google Scholar 

  • Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz CA, Dell C, Adesogan A, Yang WZ, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production – a review of technical options for non-CO2 emissions. In: Gerber P, Henderson B, Makkar H (eds) FAO animal production and health. FAO, Rome, p 177

    Google Scholar 

  • Hulshof RBA, Berndt A, Gerrits WJJ, Dijkstra J, van Zijderveld SM, Newbold JR, Perdok HB (2012) Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J Anim Sci 90:2317–2323

    CAS  Google Scholar 

  • IPCC (2001) Technical summary: contribution of Working Group I to the Third Assessment Report. Inter governmental panel on climate change, Jan 2001

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis, summary for policy makers. Contribution of working group I to the fourth assessment report of intergovernmental panel on climate change. http://www.ipcc.ch

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Impacts, adaptation and vulnerability. http://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-TS_FGDall.pdf

  • Itabashi H, Kobayashi T, Matsumoto M (1984) The effects of rumen ciliate protozoa on energy metabolism in some constituents in rumen fluid and blood plasma of goats. Jpn J Zoo Tech Sci 55:248

    CAS  Google Scholar 

  • Jayanegara A, Leiber F, Kreuzer M (2012) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J Anim Physiol Anim Nutr 96:356–375

    Google Scholar 

  • Johnson KA, Johnson DE (1995b) Methane emissions from cattle methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  Google Scholar 

  • Johnson DE, Ward GW, Ramsey JJ (1996) Livestock methane: current emissions and mitigation potential. In: Kornegay ET (ed) Nutrient management of food animals to enhance and protect the environment. Lewis Publishers, New York, pp 219–234

    Google Scholar 

  • Jordan E, Lovett DK, Monahan FJ, Callan J, Flynn B, O’Mara FP (2006) Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. J Anim Sci 84:162–170

    CAS  Google Scholar 

  • Jousan FD, Hansen PJ (2004) Insulin-like growth factor-I as a survival factor for the bovine preimplantation embryo exposed to heat shock. Biol Reprod 71:1665–1670

    CAS  Google Scholar 

  • Jousan FD, Hansen PJ (2007) Insulin-like growth factor-I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti-apoptotic actions requiring PI3K signaling. Mol Reprod Dev 74:189–196

    CAS  Google Scholar 

  • Kabubo-Mariara J (2005) Herders response to acute land pressure under changing property rights: some insights from Kenya. Environ Dev Econ 10(1):67–85

    Google Scholar 

  • Kabubo-Mariara J (2007) Poverty and rural livelihoods in Kenya: evidence from a semi-arid region. In: Tisdell C (ed) Poverty, poverty alleviation and social disadvantage: analysis, case studies and policies. Serials Publications, Vol III, Part VII, Chapter 56

    Google Scholar 

  • Kabubo-Mariara J (2008) Climate change adaptation and livestock activity choices in Kenya: an economic analysis. Nat Res Forum 32:131–141

    Google Scholar 

  • Kaim M, Bloch A, Wolfenson D, Braw-Tal R, Rosenberg M, Voet H, Folman Y (2003) Effects of GnRH administered to cows at the onset of estrus on timing of ovulation, endocrine responses and conception rates. J Dairy Sci 86:2012–2021

    CAS  Google Scholar 

  • Kingeston-Smith AH, Edwards JE, Huws SA, Kim EJ, Abberton M (2010) Plant based strategies towards minimizing live stocks long shadow. Proc Nutr Soc 69:613–620

    Google Scholar 

  • Kirchgessner M, Windisch W, Muller HL (1995) Nutritional factors for quantification of methane production. Ruminant physiology, digestion metabolism growth and reproduction. In: Proceedings of the 8th international symposium on ruminant physiology. Ferdinand Enke Verlag, Stuttgart, pp 333–348

    Google Scholar 

  • Klieve AV, Joblin K (2007) Comparison in hydrogen utilisation of ruminal and marsupial reductive acetogens. In: Kennedy R (ed) 5 year research progress report 2002–2007. The pastoral greenhouse gas research consortium, Wellington, pp 34–35

    Google Scholar 

  • Knight T, Ronimus RS, Dey D, Tootill C, Naylor G, Evans P, Molano G, Smith A, Tavendale M, Pinares-Patino CS, Clark H (2011) Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim Feed Sci Technol 166:101–112

    Google Scholar 

  • Kreuzer M, Kirchgessner M, Müller HL (1986) Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steam-flaked maize starch. Anim Feed Sci Technol 16:233–241

    Google Scholar 

  • Lascano CE, Cárdenas E (2010) Alternatives for methane emission mitigation in livestock systems. Rev Bras Zootec 39:175–182

    Google Scholar 

  • Le-Liboux S, Peyraud JL (1999) Effect of forage particle size and feeding frequency on fermentation patterns and sites and extent of digestion in dairy cows fed mixed diets. Anim Feed Sci Technol 76:297–319

    Google Scholar 

  • Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco M, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT (2010) The genome sequence of the rumen Methanogen Methanobrevibacter reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 5:e8926

    Google Scholar 

  • Lee SS, Hsu JT, Mantovani HC, Russell JB (2002) The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol Lett 217:51–55

    CAS  Google Scholar 

  • Leng RA (2008) The potential of feeding nitrate to reduce enteric methane production in ruminants. http://www.penambulbooks.com/Papers%20&%20Presentations.htm

  • Lopez S, McIntosh FM, Wallace RJ, Newbold CJ (1999) Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim Feed Sci Technol 78:1–9

    CAS  Google Scholar 

  • Lovett D, Bortolozzo A, Conaghan P, O’Kiely P, O’Mara FP (2004) In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage Sci 59:227–232

    CAS  Google Scholar 

  • Lovett DK, Stack LJ, Lovell S, Callan J, Flynn B, Hawkins M, O’Mara FP (2005) Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. J Dairy Sci 88:2836–2842

    CAS  Google Scholar 

  • Luo Y, Pfister P, Leisinger T, Wasserfallen A (2001) The genome of archaeal prophage ψm100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol 183:5788–5792

    CAS  Google Scholar 

  • Mamuad LL, Kim SH, Lee SS, Cho KK, Jeon CO, Lee SS (2012) Characterization, metabolites and gas formation of fumarate reducing bacteria isolated from Korean native goat (Capra hircus coreanae). J Microbiol 50:925–931

    CAS  Google Scholar 

  • Mantovani HC, Russell JB (2002) The ability of a bacteriocin of streptococcus bovis HC5 (bovicin HC5) to inhibit clostridium aminophilum, an obligate amino acid fermenting bacterium from the rumen. Anaerobe 8:247–252

    CAS  Google Scholar 

  • Martin C, Dubroeucq H, Micol D, Agabriel J, Doreau M (2007) Methane output from beef cattle fed different high-concentrate diets. In: Proceedings of the British Society of Animal Science, Southport, 2–4 Apr 2007, p 46

    Google Scholar 

  • Martinez-Fernandez G, Arco A, Abecia L, Cantalapiedra-Hijar G, Molina-Alcaide E, Martin-Garcia AI, Kindermann M, Duval S, Yanez-Ruiz DR (2013) The addition of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol in the diet of sheep sustainably reduces methane emissions and the effect persists over a month. Adv Anim Biosci 4(2):368

    Google Scholar 

  • Masike S (2007) The impacts of CC on cattle water demand and supply in Khurutshe, Botswana. PhD thesis, University of Waikato, New Zealand

    Google Scholar 

  • Mathison GW, Okine EK, McAllister TA, Dong Y, Galbraith J, Dmytruk OIN (1998) Reducing methane emissions from ruminant animals. J Appl Anim Res 14:1–28

    CAS  Google Scholar 

  • McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exper Agri 48:7–13

    CAS  Google Scholar 

  • McAllister TA, Okine EK, Mathison GW, Cheng KJ (1996) Dietary, environmental and microbiological aspects of methane production in ruminants. Can J Anim Sci 76:231–243

    CAS  Google Scholar 

  • McCaughey WP, Wittenberg KM, Corrigan D (1997) Methane production by steers on pasture. Can J Anim Sci 77:519–524

    Google Scholar 

  • McCaughey WP, Wittenberg K, Corrigan D (1999) Impact of pasture type on methane production by lactating cows. Can J Anim Sci 79:221–226

    Google Scholar 

  • McGinn SM, Beauchemin KA, Coates T, Colombatto D (2004) Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast and fumaric acid. J Anim Sci 82:3346–3356

    CAS  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: our human planet. Summary for decision makers. The Millennium Ecosystem Assessment, online at http://www.millenniumassessment.org

  • Mills JA, Dijkstra J, Bannink A, Cammel SB, Kebreab E, France J (2001) A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application. J Anim Sci 79:1584–1597

    CAS  Google Scholar 

  • Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, Nonaka I, Asanuma N, Denman SE, McSweeney CS (2011) Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br J Nutr 8:1–10

    Google Scholar 

  • Molano G, Knight TW, Clark H (2008) Fumaric acid supplements have no effect on methane emissions per unit of feed intake in wether lambs. Aust J Exp Agric 48:165–168

    CAS  Google Scholar 

  • Morgavi DP, Forano E, Martin C, Newbold CJ (2010) Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024–1036

    CAS  Google Scholar 

  • Morgavi DP, Martin C, Boudra H (2013) Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo. J Anim Sci 91:848–860

    CAS  Google Scholar 

  • Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253

    CAS  Google Scholar 

  • Mwenya B, Santoso B, Sar C, Gamo Y, Kobayashi T, Arai I, Takahashi J (2004) Effects of including β1-4 galacto-oligosaccharides lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Anim Feed Sci Technol 115:313–326

    CAS  Google Scholar 

  • Newbold CJ, Rode LM (2005) Dietary additives to control methanogenesis in the rumen. In: Soliva CR, Takahashi J, Kreuzer M (eds) Second international conference on greenhouse gases and animal agriculture, Working Papers, ETH, Zurich, pp 60–70

    Google Scholar 

  • Newbold CJ, Rode LM (2006) Dietary additives to control methanogenesis in the rumen. In: Soliva CR, Takahashi J, Kreuzer M (eds) Greenhouse gases and animal agriculture: an update, vol 1293, Elsevier International Congress Series. Elsevier, Amsterdam, pp 138–147

    Google Scholar 

  • Nolan JV, Hegarty RS, Hegarty J, Godwin I, Woodgate R (2010) Effects of dietary nitrate on rumen fermentation, methane production and water kinetics in sheep. Anim Prod Sci 50:801–806

    CAS  Google Scholar 

  • Nollet L, Mbanzamihigo L, Demeyer D, Verstraete W (1998) Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80. Anim Feed Sci Technol 71:49–66

    CAS  Google Scholar 

  • O’Mara F (2004) GHG production from dairying: reducing methane production. Adv Dairy Technol 16:295–309

    Google Scholar 

  • Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM, Hook SE, Gray JT, Kebreab E, France J, McBride BW (2007) Long-term effects of feeding monensin on methane production in lactating dairy cows. J Dairy Sci 90:1781–1788

    CAS  Google Scholar 

  • Ohene-Adjei S, Chaves AV, McAllister TA, Benchaar C, Teather RM, Forster RJ (2008) Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microbial Ecol 56:234–242

    CAS  Google Scholar 

  • Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci U S A 107:15135–15139

    CAS  Google Scholar 

  • Patra AK, Yu Z (2012) Effects of essential oils on methane production and fermentation by and abundance and diversity of rumen microbial populations. Appl Environ Microbiol 78:4271–4280

    CAS  Google Scholar 

  • Pfister P, Wasserfallen A, Stettler R, Leisinger T (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol Microbiol 30:233–244

    CAS  Google Scholar 

  • Pinares-Patiño CS, Hour PD, Jouany JP, Martin C (2007) Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric Ecosyst Environ 121:30–46

    Google Scholar 

  • Popova M, Martin C, Eugène M, Mialon MM, Doreau M, Morgavi DP (2011) Effect of fibre- and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls. Anim Feed Sci Technol 166:113–121

    Google Scholar 

  • Quere CL, Peters GP, Andrew RM, Boden TA, Ciais P, Friedlingstein P, Houghton RA et al (2014) Global carbon budget 2013. Earth Syst Sci Data 6:235–263

    Google Scholar 

  • Roth Z, Arav A, Braw-Tal R, Bor A, Wolfenson D (2002) Effect of treatment with follicle-stimulating hormone or bovine somatotropin on the quality of oocytes aspirated in the autumn from previously heat-stressed cows. J Dairy Sci 85:1398–1405

    CAS  Google Scholar 

  • Rotz CA, Corson MS, Chianese DS, Coiner CU (2009) The integrated farm system model: reference manual. University Park, Pa: USDAARS Pasture Systems and Watershed Management research unit: www.ars.usda.gov/SP2UserFiles/Place/19020000/ifsmreference

  • Rowlinson P, Steele M, Nefzaoui A (2008) Livestock and global climate change. Proceedings of the international conference in Hammamet. Cambridge University Press, pp 216–216

    Google Scholar 

  • Rutledge JJ (2001) Use of embryo transfer and IVF to bypass effects of heat stress. Theriogenology 55:105–111

    CAS  Google Scholar 

  • Sakatani M, Kobayashi S, Takahashi M (2004) Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Mol Reprod Dev 67:77–82

    CAS  Google Scholar 

  • Sang SL, Mantovani HC, Russell JB (2002) The binding and degradation of nisin by mixed ruminal bacteria. FEMS Microbiol Ecol 42:339–345

    Google Scholar 

  • Santoso B, Mwenyaa B, Sara C, Gamoa Y, Kobayashia T, Morikawaa R, Kimurab K, Mizukoshib H, Takahashi J (2004) Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest Prod Sci 91:209–217

    Google Scholar 

  • Sar C, Santoso B, Gamo Y, Kobayashi T, Shiozaki S, Kimura K, Mizukoshi H, Arai I, Takahashi J (2004) Effects of combination of nitrate with β1-4 galacto-oligosaccharides and yeast (Candida kefyr) on methane emission from sheep. Asian Austr J Anim Sci 17(1):73–79

    CAS  Google Scholar 

  • Sar C, Mwenya B, Santoso B, Takaura K, Morikawa R, Isogai N, Asakura Y, Toride Y, Takahashi J (2005) Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J Anim Sci 83:644–652

    CAS  Google Scholar 

  • Sejian V (2013) Climate change: impact on production and reproduction, adaptation mechanisms and mitigation strategies in small ruminants: a review. Indian J Small Rumin 19(1):1–21

    Google Scholar 

  • Sejian V, Naqvi SMK (2012) Livestock and climate change: mitigation strategies to reduce methane production. In: Liu G (ed) Greenhouse gases – capturing, utilization and reduction. Intech Publisher, Croatia, pp 254–276

    Google Scholar 

  • Sejian V, Lal R, Lakritz J, Ezeji T (2011a) Measurement and prediction of enteric methane emission. Int J Biometeorol 55:1–16

    Google Scholar 

  • Sejian V, Lakritz J, Ezeji T, Lal R (2011b) Forage and flax seed impact on enteric methane emission in dairy cows. Res J Vet Sci 4:1–8

    CAS  Google Scholar 

  • Sejian V, Rotz A, Lakritz J, Ezeji T, Lal R (2011c) Modeling of green house gas emissions in dairy farms. J Anim Sci Adv 1(1):12–20

    CAS  Google Scholar 

  • Sejian V, Indu S, Ujor V, Ezeji T, Lakritz J, Lal R (2012a) Global climate change: enteric methane reduction strategies in livestock. In: Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds) Environmental stress and amelioration in livestock production. Springer-Verlag GMbH Publisher, Germany, pp 469–502

    Google Scholar 

  • Sejian V, Valtorta S, Gallardo M, Singh AK (2012b) Ameliorative measures to counteract environmental stresses. In: Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (eds) Environmental stress and amelioration in livestock production. Springer-Verlag GMbH Publisher, Germany, pp 153–180

    Google Scholar 

  • Sejian V, Singh AK, Sahoo A, Naqvi SMK (2014) Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress. J Anim Physiol Anim Nutr 98:72–83

    CAS  Google Scholar 

  • Seyrek K, Kargin KF, Bildik A (2004) Chronic ethanol induced oxidative alterations in the rat tissues and protective effect of vitamin E. Ind Vet J 81:1102–1104

    Google Scholar 

  • Shibata M (1996) Factors affecting thermal balance and production of ruminants in a hot environment – a review. Memories of National Institute of Animal Industry No. 10. 60 pp

    Google Scholar 

  • Shinde AK, Sejian V (2013) Sheep husbandry under changing climate scenario in India: an overview. Indian J Anim Sci 83(10):998–1008

    Google Scholar 

  • Sidahmed A (2008) Livestock and CC: coping and risk management strategies for a sustainable future. In: Livestock and global CC conference proceeding, May 2008, Tunisia

    Google Scholar 

  • Skuce PJ, Morgan ER, van Dijk J, Mitchell M (2013) Animal health aspects of adaptation to CC: beating the heat and parasites in a warming Europe. Animal 7(2):333–345

    Google Scholar 

  • Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20:219–230

    Google Scholar 

  • Spears JW, Whisnant CS, Huntington GB, Lloyd KE, Fry RS, Krafka K, Lamptey A, Hyda J (2012) Chromium propionate enhances insulin sensitivity in growing cattle. J Dairy Sci 95:2037–2045

    CAS  Google Scholar 

  • Staerfl SM, Amelchanka SL, Kälber T, Soliva CR, Kreuzer M, Zeitz JO (2012) Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows. Livest Sci 150:293–301

    Google Scholar 

  • Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80:1–9

    CAS  Google Scholar 

  • Suk JE, Semenza JC (2011) Future infectious disease threats to Europe. Am J Public Health 101:2068–2079

    Google Scholar 

  • Sunil Kumar BV, Singh G, Meur SK (2010) Effects of addition of electrolyte and ascorbic acid in feed during heat stress in buffaloes. Asian Aust J Anim Sci 23(7):880–888

    CAS  Google Scholar 

  • Takahashi J (2011) Some prophylactic options to mitigate methane emission from animal agriculture in Japan. Asian Aust J Anim Sci 24:285–294

    CAS  Google Scholar 

  • Tejido ML, Ranilla MJ, García-Martínez R, Carro MD (2005) In vitro microbial growth and rumen fermentation of different diets as affected by the addition of disodium malate. Anim Sci 81:31–38

    CAS  Google Scholar 

  • Tezel U, Pierson JA, Pavlostathis SG (2006) Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Res 40(19):3660–3668

    CAS  Google Scholar 

  • Thames JL, Cluff CB (1982) Water harvesting on surface mine spoils. Paper presented at the Wisconsin mined-land rehabilitation research workshop, Ft. Collins, Colorado, 1–11 June 1982, 4 pages

    Google Scholar 

  • Thornton PK, Herrero M (2010) The inter-linkages between rapid growth in livestock production, CC, and the impacts on water resources, land use, and deforestation. Policy research working paper 5178, pp 1–82

    Google Scholar 

  • Tomkins WW, Colegate SM, Hunter RA (2009) A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Anim Prod 49(12):1053–1058

    CAS  Google Scholar 

  • Ulyatt MJ, Lassey KR, Shelton ID, Walker CF (2002) Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand. N Z J Agric Res 45:217–226

    CAS  Google Scholar 

  • Ungerfeld E, Forster RJ (2011) A meta-analysis of malate effects on methanogenesis in ruminal batch cultures. Anim Feed Sci Technol 166–167:282–290

    Google Scholar 

  • Ungerfeld EM, Rust SR, Burnett R (2003) Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod Nutr Dev 43:189–202

    CAS  Google Scholar 

  • Ungerfeld EM, Kohn RA, Wallace RJ, Newbold CJ (2007) A meta-analysis of fumarate effects on methane production in ruminal batch cultures. J Anim Sci 85:2556–2563

    CAS  Google Scholar 

  • USEPA (1993) Anthropogenic methane emissions in the United States. Estimates for 1990: report to congress. Atmospheric PolluStatestion Prevention Division, Office of Air and Radiation, US, Washington, DC

    Google Scholar 

  • Valtorta SE, Leva PE, Gallardo MR, Scarpati OE (2002) Milk production responses during heat waves events in Argentina. In: 15th conference on biometeorology and aerobiology – 16th international congress on biometeorology. Kansas City, MO. American Meteorological Society, Boston p 98–101

    Google Scholar 

  • Van Dorland HA, Wettstein HR, Leuenberger H, Kreuzer M (2007) Effect of supplementation of fresh and ensiled clovers to ryegrass on nitrogen loss and methane emissions of dairy cows. Livest Sci 111:57–69

    Google Scholar 

  • van Nevel CJ, Demeyer DI (1995) Feed additives and other interventions for decreasing methane emissions. Biotechnol Anim Feeds Feed 17:329–349

    Google Scholar 

  • Van Nevel C, Demeyer D (1996) Control of rumen methanogenesis. Environ Monit Assess 42:73–97

    Google Scholar 

  • Van Zijderveld SM, Gerrits WJJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, Perdok HB (2010) Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci 93:5856–5866

    Google Scholar 

  • Van Zijderveld SM, Gerrits WJJ, Dijkstra J, Newbold JR, Hulshof RBA, Perdok HB (2011) Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J Dairy Sci 94:4028–4038

    Google Scholar 

  • Vercruysse J, Schetters T, Knox DP, Willadsen P, Claerebout E (2007) Control of parasitic disease by vaccination – an answer to drug resistance? Rev Sci Technol 26:105–115

    CAS  Google Scholar 

  • Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133

    CAS  Google Scholar 

  • Waghorn GC, Tavendale MH, Woodfield DR (2002) Methanogenesis from forages fed to sheep. Proc N Z Grassl Assoc 64:167–171

    Google Scholar 

  • Wang CJ, Wang SP, Zhou H (2009) Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim Feed Sci Technol 148:157–166

    CAS  Google Scholar 

  • Wedlock DN, Pedersen G, Denis M, Dey D, Janssen PH, Buddle BM (2010) Development of a vaccine to mitigate greenhouse gas emissions in agriculture; vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. N Z Vet J 58:29–36

    CAS  Google Scholar 

  • Weimer PJ (1998) Manipulating ruminal fermentation: a microbial ecological perspective. J Anim Sci 76:3114–3122

    CAS  Google Scholar 

  • Weiss RA, McMichael AJ (2004) Social and environmental risk factors in the emergence of infectious diseases. Nat Med 10:S70–S76

    CAS  Google Scholar 

  • West JW (1999) Nutritional strategies for managing the heat stressed dairy cow. J Anim Sci 77(2):21–35

    CAS  Google Scholar 

  • West JW (2002) Physiological effects of heat stress on production and reproduction. Proc Tri-State Nutr Conf 1–9

    Google Scholar 

  • Whitelaw FG, Eadie WJ, Bruce LA, Shand WA (1984) Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br J Nutr 52:261

    CAS  Google Scholar 

  • Wilk J, Wittgren HB (eds) Adapting water management to CC. Swedish Water House Policy Brief Nr. 7. SIWI 2009

    Google Scholar 

  • Williams YJ, Rea SM, Popovski S, Pimm CL, Williams AJ, Toovey AF, Skillman LC, Wright ADG (2008) Responses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br J Nutr 99:100–109

    CAS  Google Scholar 

  • Williams YJ, Popovski S, Rea SM, Skillman LC, Toovey AF, Northwood KS, Wright ADG (2009) A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl Environ Microbiol 75:1860–1866

    CAS  Google Scholar 

  • Wina E, Muetzel S, Hoffmann E, Makkar HPS, Becker K (2005) Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim Feed Sci Technol 121:159–174

    CAS  Google Scholar 

  • Wood TA, Wallace RJ, Rowe A, Price J, Yáňez-Ruiz DR, Murray P, Newbold CJ (2009) Encapsulated fumaric acid as a feed ingredient to decrease ruminal methane emissions. Anim Feed Sci Technol 152:62–71

    Google Scholar 

  • World Meteorological Organization (2014) Weather and climate: engaging youth. WMO Bull 63(1):1–44

    Google Scholar 

  • Wright AD, Kennedy P, O’Neill CJ, Toovey AF, Popovski S, Rea SM, Pimm CL, Klein L (2004) Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976–3985

    CAS  Google Scholar 

  • Yates CM, Cammell SB, France J, Beever DE (2000) Predictions of methane emissions from dairy cows using multiple regression analysis. In: Proceedings of the British Society of Animal Science, Scarborough, UK, March 2000, pp 94

    Google Scholar 

  • Zhang Y, Bi P, Hiller JE (2008) CC and the transmission of vector-borne diseases: a review. Asia Pac J Public Health 20:64–76

    Google Scholar 

  • Zhou X, Sar C, Kobayashi T, Takahashi J, Santoso B, Gamo Y, Mwenya B (2004) Effects of probiotic vitacogen and ß1-4 galacto-oligosaccharides supplementation on methanogenesis and energy and nitrogen utilization in dairy cows. Asian Aust J Anim Sci 17(3):349–354

    Google Scholar 

  • Zhou M, Chung YH, Beauchemin KA, Holtshausen L, Oba M, McAllister TA, Guan LL (2011) Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J Appl Microbiol 111:1148–1158

    CAS  Google Scholar 

  • Zhou X, Meile L, Kreuzer M, Zeitz JO (2013) The effect of lauric acid on methane production and cell viability of Methanobrevibacter ruminantium. Adv Anim Biosci 4(2):458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerasamy Sejian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sejian, V. et al. (2015). Overview on Adaptation, Mitigation and Amelioration Strategies to Improve Livestock Production Under the Changing Climatic Scenario. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_22

Download citation

Publish with us

Policies and ethics