Skip to main content

Alternate H2 Sinks for Reducing Rumen Methanogenesis

  • Chapter

Abstract

Greenhouse gas (GHG) emissions from livestock is about 7,516 million metric tons CO2−eq. year−1 and has multiple components that include enteric methane emissions, methane and nitrous oxide emissions from manure and carbon dioxide emissions associated with feed production and grazing. An uninterruptedly increasing concentration (155 % more than preindustrial level), a comparatively high global warming potential and a short half-life of methane make it a bit more important than any other GHG in the control of global warming and climate change. Enteric methane mitigation is not only important from a global warming point but also for saving animal dietary energy which is otherwise lost in the form of methane. Due to the central regulatory role of H2, it is generally referred as the currency of fermentation and most of the mitigation strategies revolve around its production or disposal in such a way as to ensure the conservation of energy into desirable end products. In the chapter, an attempt is made to address the prospects of some emerging approaches to redirect metabolic H2 away from methanogenesis and serve as potential alternate sink for H2 in the rumen for conserving energy. The prospects of alternate sinks, for instance, sulphate and nitrate reduction and reductive acetogenesis and propionogenesis, are debated in the chapter along with the anticipated benefits that can be achieved from the practically feasible 20 % enteric methane reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akunna JC, Bizeau C, Moletta R (1993) Nitrate and nitrite reductions with anaerobic sludge using various carbon sources– glucose, glycerol, acetic acid, lactic acid and methanol. Water Res 27:1303–1312

    Article  Google Scholar 

  • Anderson RC, Rasmussen MA (1998) Use of a novel nitrotoxin-metabolizing bacterium to reduce ruminal methane production. Bioresour Technol 64:88–95

    Article  Google Scholar 

  • Asanuma N, Iwamoto M, Hino T (1999) Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci 82:780–787

    Article  CAS  Google Scholar 

  • Ascensão AMD (2010) Effects of nitrate and additional effect of probiotic on methane emissions and dry matter intake in Nellore bulls. Dissertation, Universidade de Trás-os-Montes e Alto Douro

    Google Scholar 

  • Backman K (2012) The effect of additional nitrate and sulfur in the diet on the methane production in cattle. Degree project, Swedish University of Agricultural Sciences. http://stud.epsilon.slu.se/4760/11/backman_K_120917.pdf. Assessed 15 May 2014

  • Bannink A, Kogut J, Dijkstra J, France J, Kebreab E, Van Vuuren AM, Tamminga S (2006) Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J Theor Biol 238:36–51

    Article  CAS  Google Scholar 

  • Barry TN, Thompson A, Armstrong DG (1977) Rumen fermentation studies on two contrasting diets. 2. Comparison of the performance of an in vitro continuous culture fermentation with in vivo fermentation. J Agric Sci 89:197–208

    Article  Google Scholar 

  • Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agric 48:21–27

    Article  CAS  Google Scholar 

  • Bernalier A, Collins MD, Leclerc M, Rochet V, Willems A (1996) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183

    Article  CAS  Google Scholar 

  • Boccazzi P, Patterson JA (2011) Using hydrogen limited anaerobic continuous culture to isolate low hydrogen threshold ruminal acetogenic bacteria. Agric Food Anal Bacteriol 1:33–44

    Google Scholar 

  • Breznak JA, Kane MD (1990) Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Rev 7:309–313

    Article  CAS  Google Scholar 

  • Brunet RC, Garcia-Gil LJ (2006) Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol 21:131–138

    Article  Google Scholar 

  • Bryant MP, Small N, Bouma C, Robinson I (1958) Studies on the composition of the ruminal flora and fauna of young calves. J Dairy Sci 41:1747–1767

    Article  Google Scholar 

  • Clark H, Pinares-Patino CS, deKlein C (2005) Methane and nitrous oxide emissions from grazed grasslands. In: McGilloway DA (ed) Grassland: a global resource. Wageningen Academic Publishers, Wageningen, pp 279–294

    Google Scholar 

  • Crawford GI (2007) Managing sulfur concentrations in feed and water. In: Proceeding of the Minnesota nutrition conference, St. Paul, pp 80–93

    Google Scholar 

  • Cummings BA, Gould DH, Caldwell DR, Hamar DW (1995) Ruminal microbial alterations associated with sulfide generation in steers with dietary sulfate-induced polioencephalomalacia. Am J Vet Res 56:1390–1395

    CAS  Google Scholar 

  • Czerkawski JW (1986) An introduction to rumen studies. Pergamon Press, New York, 172 p

    Google Scholar 

  • Czerkawski JW, Breckenridge G (1971) Determination of concentration of hydrogen and some other cases dissolved in biological fluids. Lab Pract 20:403

    CAS  Google Scholar 

  • DiLorenzo N, Dahlen CR, Diez-Gonzalez F, Lamb GC, Larson JE, DiCostanza A (2008) Effects of feeding polyclonal antibody preparations on rumen fermentation patterns, performance, and carcass characteristics of feedlot steers. J Anim Sci 86:3023–3032

    Article  CAS  Google Scholar 

  • Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng KJ (1997) Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can J Anim Sci 77:269–278

    Article  CAS  Google Scholar 

  • Dorman DC, Moulin FJ, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 65:18–25

    Article  CAS  Google Scholar 

  • Drake HL (1994) Introduction to acetogenesis. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York/London, pp 3–60

    Chapter  Google Scholar 

  • Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann NY Acad Sci 1125:100–128. doi:10.1196/annals.1419.016

    Article  CAS  Google Scholar 

  • Drewnoski ME, Richter EL, Hansen SL (2012) Dietary sulfur concentration affects rumen hydrogen sulfide concentrations in feedlot steers during transition and finishing. J Anim Sci 90:4478–5078

    Article  CAS  Google Scholar 

  • Eugene M, Masse D, Chiquette J, Benchaar C (2008) Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can J Anim Sci 88:331–334

    Article  CAS  Google Scholar 

  • Elizabeth AO, Leadbetter JR (2011) Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and life styles. Appl Environ Microbiol 77(10):3461–3467

    Article  Google Scholar 

  • FAO (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization, Rome. http://ftp.fao.org/docrep/fao/010/a0701e/a0701e.pdf. Assessed 15 May 2014

  • Fievez V, Dohme F, Danneels M, Raes K, Demeyer D (2003) Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim Feed Sci Technol 104:41–58

    Article  CAS  Google Scholar 

  • Fonty GF, Joblin K, Chavarot M, Roux GN, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73:6391–6403

    Article  CAS  Google Scholar 

  • Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M (2010) Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 76:7785–7795

    Article  CAS  Google Scholar 

  • Gagen EJ, Mosoni P, Denman SE, Al Jassim R, McSweeney CS, Forano E (2012) Methanogen colonisation does not significantly alter acetogen diversity in lambs isolated 17 h after birth and raised aseptically. Microb Ecol 64:628–640

    Article  CAS  Google Scholar 

  • Gagen EJ, Denman SE, McSweeney CS (2015) Acetogenesis as an alternative to methanogenesis in the rumen. In: Malik PK, Bhatta R, Takahshi J, Kohn RA, Prasad CS (eds) Livestock production and climate change. CABI, Wallingford, pp 292–303

    Google Scholar 

  • Genthner BRS, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476

    Google Scholar 

  • Givens DI, Cottrill BR, Davies M, Lee PA, Mansbridge RJ, Moss AR (2000) Sources of n-3 polyunsaturated fatty acids additional to fish oil for livestock diets: a review. Nutr Abstr Rev Ser B 70:3–19

    Google Scholar 

  • Goodland R, Anhang J (2009) Livestock and climate change: what if the key actors in climate change are cows, pigs and chickens? World Watch, November/December 2009. http://www.worldwatch.org/files/pdf/Livestock%20and%20Climate%20Change.pdf. Assessed 15 May 2014

  • Gould DH (1998) Polioencephalomalacia. J Anim Sci 76:309–314

    CAS  Google Scholar 

  • Grainger C, Beauchemin KA (2011) Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol 166–167:308–320

    Article  Google Scholar 

  • Grainger C, Williams R, Clarke T, Wright ADG, Eckard RJ (2010) Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J Dairy Sci 93:2612–2619

    Article  CAS  Google Scholar 

  • Greening RC, Leedle JAZ (1989) Enrichment and isolation of Acetitomaculum ruminis gen. Nov., sp. Nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 151:399–406

    Article  CAS  Google Scholar 

  • Hegarty RS, Gerdes R (1999) Hydrogen production and transfer in the rumen. Recent Adv Anim Nutr 12:37–44

    Google Scholar 

  • Hillman K, Lloyd D, Williams AG (1985) Use of a portable quadrupole mass spectrometer for the measurement of dissolved gas concentrations in ovine rumen liquor in situ. Curr Microbiol 12:335–340

    Article  CAS  Google Scholar 

  • Howard BH, Hungate RE (1976) Desulfovibrio of the sheep rumen. Appl Environ Microbiol 32:598–602

    CAS  Google Scholar 

  • Hulshof RBA, Berndt A, Gerrits WJJ, Dijkstra J, van Zijderveld SM, Newbold JR, Perdok HB (2012) Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J Anim Sci 90:2317–2323

    Article  CAS  Google Scholar 

  • Hungate RE (1967) Hydrogen as an intermediate in the rumen fermentation. Arch Microbiol 59:158–164

    CAS  Google Scholar 

  • Hungate RE, Smith W, Bauchop T, Ida Y, Rabinowitz JC (1970) Formate as an intermediate in the bovine rumen fermentation. J Bacteriol 102:389

    CAS  Google Scholar 

  • ILRI (2011) More on getting credible figures for livestock emissions of greenhouse gases. http://www.ilri.org/ilrinews/index.php/page/7?s=%25. Assessed 15 May 2014

  • Inthapanya S, Preston TR, Leng RA (2012) Biochar increases biogas production in a batch digester charged with cattle manure. Livest Res Rural Dev 24:Article #212. http://www.lrrd.org/public-lrrd/proofs/lrrd2412/sang24212.htm. Assessed 15 May 2014

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working group I, II & III to the Fourth Assessment Report of the IPCC, Geneva, Switzerland, p 104

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the IPCC. http://www.climatechange2013.org/images/report/wg1ar5_all_final.pdf. Assessed 15 May 2014

  • IPCC (2014) IPCC fifth assessment report, first order draft synthesis report. http://www.docstoc.com/docs/168836735/Climate-Change-2014-Synthesis-Draft-Restricted-ipcc-draft-14-0421pdf. Assessed 15 May 2014

  • IUPAC (1981) Solubility Data Series. In: Young CL (ed) Hydrogen and deuterium, vol 5/6. Pergamon Press, Oxford

    Google Scholar 

  • Janssen PH (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 160:1–22

    Article  CAS  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    Article  CAS  Google Scholar 

  • Jenkins TC, Wallace RJ, Moate PJ, Mosley EE (2008) Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 86:397–412

    Article  CAS  Google Scholar 

  • Joblin KN (1999) Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res 50:1307–1313

    Article  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  Google Scholar 

  • Johnson D, Johnson K (2002) Recent developments in understanding enteric methane production by ruminants: implications for mitigation. In: International Non-CO2 GHG mitigation workshop. Washington, DC

    Google Scholar 

  • Johnson KA, Kincaid RL, Westberg HH, Gaskins CT, Lamb BK, Cronrath JD (2002) The effect of oilseeds in diets of lactating cows on milk production and methane emissions. J Dairy Sci 85:1509–1515

    Article  CAS  Google Scholar 

  • Key N, Tallard G (2012) Mitigating methane emissions from livestock: a global analysis of sectoral policies. Clim Change 112(2):387–414

    Article  Google Scholar 

  • Klieve AV, Joblin KN (2007) Comparison in hydrogen utilization of ruminal and marsupial reductive acetogens. In: Third international greenhouse gases and animal agriculture conference, Christchurch, New Zealand, pp 34–35

    Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    CAS  Google Scholar 

  • Kohn RA (2015) Thermodynamic and kinetic control of methane emissions from ruminants. In: Malik PK, Bhatta R, Takahshi J, Kohn RA, Prasad CS (eds) Livestock production and climate change. CABI, Wallingford, pp 245–262

    Google Scholar 

  • Kristjansson JK, Schönheit P, Thauer RK (1982) Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282

    Article  CAS  Google Scholar 

  • Leng RA (2008) The potential of feeding nitrate to reduce enteric methane production in ruminants. Report to Department of Climate Change, Commonwealth Government, Canberra. http://www.penambulbooks.com/Downloads/Leng-Final%20Modified%20%2017-9-2008.pdf. Assessed 15 May 2014

  • Loneragan GD, Gould J, Wagner FG, Thoren M (2005) The magnitude and patterns of ruminal hydrogen sulfide production, blood thiamine concentration, and mean pulmonary arterial pressure in feedlot steers consuming water of different sulfate concentrations. Bovine Pract 39:16–22

    Google Scholar 

  • Machmuller A, Ossowski DA, Wanner M, Kreuzer M (1998) Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (RUSITEC). Anim Feed Sci Technol 71:117–130

    Article  CAS  Google Scholar 

  • Malik PK, Singhal KK, Deshpande SB, Siddique RA (2012a) Mitigation strategies for enteric methane emission with special emphasis on biological approaches: a review. Indian J Anim Sci 82:794–804

    Google Scholar 

  • Malik PK, Thulasi A, Soren NM, Prasad KS (2012b) FTHFS functional gene based diversity analysis of rumen acetogens in cattle and sheep fed on conventional diet. In: Proceeding of the 8th biennial conference of animal nutrition association held at Bikaner, Rajasthan, India during 28–30 Nov 2012

    Google Scholar 

  • Malik PK, Bhatta R, Soren NM, Sejian V, Mech A, Prasad KS, Prasad CS (2015) Feed based approaches in enteric methane amelioration. In: Malik PK, Bhatta R, Takahshi J, Kohn RA, Prasad CS (eds) Livestock production and climate change. CABI, Wallingford, pp 336–359

    Google Scholar 

  • Mamuad LL, Kim SH, Lee SS, Cho KK, Jeon CO, Lee SS (2012) Characterization, metabolites and gas formation of fumarate reducing bacteria isolated from Korean native goat (Capra hircuscoreanae). J Microbiol 50:925–931

    Article  CAS  Google Scholar 

  • Mamuad L, Kim SH, Jeong CD, Choi YJ, Jeon CO, Lee SS (2014) Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J Microbiol 52:120–128

    Article  CAS  Google Scholar 

  • Martin C, Morgavi DP, Doreau M (2010) Methane mitigation in ruminants: from microbe to the farm scale. Animals 4:351–365

    CAS  Google Scholar 

  • Mathison GW, Okine EK, McAllister TA, Dong Y, Galbraith J, Dmytruk OIN (1998) Reducing methane emissions from ruminant animals. J Appl Anim Res 14:1–28

    Article  CAS  Google Scholar 

  • McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13

    Article  CAS  Google Scholar 

  • McSweeney CS, Kang S, Gagen E, Davis C, Morrison M, Denman S (2009) Recent developments in nucleic acid based techniques for use in rumen manipulation. Rev Bras Zootec 38:341–351

    Article  Google Scholar 

  • Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, Nonaka I, Asanuma N, Denman SE, McSweeney CS (2012) Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br J Nutr 108:482–491

    Article  CAS  Google Scholar 

  • Molano G, Knight TW, Clark H (2008) Fumaric acid supplements have no effect on methane emissions per unit of feed intake in wether lambs. Aust J Exp Agric 48:165–168

    Article  CAS  Google Scholar 

  • Morgavi DP, Eugene M, Martin C, Doreau M (2011) Reducing methane emissions in ruminants: is it an achievable goal? In: Ranilla MJ, Carro MD, Ben Salem H, Morand-Fehr P (eds) Challenging strategies to promote the sheep and goat sector in the current global context. CIHEAM/CSIC/Universidad de León /FAO Options Méditerranéennes: Série A. Séminaires Méditerranéens, Zaragoza, pp 65–73

    Google Scholar 

  • Morvan B, Dore J, Rieu-Lesme F, Foucat L, Fonty G, Gouet P (1994) Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiol Lett 117:249–256

    Article  CAS  Google Scholar 

  • Morvan B, Bonnemoy F, Fonty G, Gouet P (1996) Quantitative determination of H2 utilizing acetogenic and sulphate reducing bacteria and methanogenic archaea from the digestive tract of different mammals. Curr Microbiol 32:129–133

    Article  CAS  Google Scholar 

  • Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253

    Article  CAS  Google Scholar 

  • Murray RM, Bryant AM, Leng RA (1976) Rates of production of methane in the rumen and large intestine of sheep. Br J Nutr 36:1–14

    Article  CAS  Google Scholar 

  • Nolan JV, Hegarty RS, Hegarty J, Godwin IR, Woodgate R (2010) Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim Prod Sci 50:801–806

    Article  CAS  Google Scholar 

  • Nollet L, Demeyer D, Verstraete W (1997a) Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl Environ Microbiol 63:194–200

    CAS  Google Scholar 

  • Nollet L, Vande VI, Verstraete W (1997b) Effect of the addition of Peptostreptococcus productus ATCC35244 on the gastro-intestinal microbiota and its activity, as simulated in an in vitro simulator of the human gastro-intestinal tract. Appl Microbiol Biotechnol 48:99–104

    Article  CAS  Google Scholar 

  • NRC (2005) Mineral tolerance of animals, 2nd edn. National Academy Press, Washington, DC

    Google Scholar 

  • Ohashi Y, Ushida K, Miyasaki K, Kojima Y (1996) Effect of initial sulfate level on electron partition between methanogenesis and sulfate reduction in the rumen. Ann Zootech 45:320

    Article  Google Scholar 

  • Olson OE, Whitehead EI (1940) Nitrate content of some South Dakota plants. Proc S D Acad Sci 20:95–101

    CAS  Google Scholar 

  • Olsson K, Evans P, Joblin KN (2006) Ruminal acetogens in dairy cows: dietary effects and quantification of E. limosum. In: Reproduction nutrition development. EDP Sciences, Aberdeen, S109

    Google Scholar 

  • Oren A (2012) There must be an acetogen somewhere. Front Microbiol 3:1–2. doi:10.3389/fmicb.2012.00022

  • PBL Netherlands Environmental Assessment Agency (2011) Long term trend in global CO2 emissions: 2011 report. Available at http://www.pbl.nl/en/publications/2011/long-term-trend-in-global-co2-emissions-2011-report

  • Pelchen A, Peters KJ (1998) Methane emissions from sheep. Small Rumin Res 27:13750

    Article  Google Scholar 

  • Phuc HT, Quang DH, Preston TR, Leng RA (2009) Nitrate as a fermentable nitrogen supplement for goats fed forage based diets low in true protein. Livst Res Rural Dev 21. http://www.lrrd.org/lrrd21/1/trin21010.htm. Assessed 15 May 2014

  • Phuong Le TB, Preston TR, Leng RA (2011) Mitigating methane production from ruminants; effect of supplementary sulphate and nitrate on methane production in an in vitro incubation using sugar cane stalk and cassava leaf meal as substrate. Livst Res Rural Dev 23. http://www.lrrd.org/lrrd23/2/phuo23022.htm. Assessed 15 May 2014

  • Pinares-Patiño CS, Waghorn GC, Hegarty RS, Hoskin SO (2009) Effects of intensification of pastoral farming on greenhouse gas emissions in New Zealand. N Z Vet J 57:252–261

    Article  Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 1784:1873–1898

    Article  CAS  Google Scholar 

  • Rieu-Lesme F, Fonty G, Dore J (1995) Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen. FEMS Microbiol Lett 125:77–82

    Article  CAS  Google Scholar 

  • Rieu-Lesme F, Morvan B, Collins MD, Fonty G, Willems A (1996) A New H2/CO2 using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov. FEMS Microbiol Lett 140:281–286

    CAS  Google Scholar 

  • Rieu-Lesme F, Dauga C, Fonty G, Dore J (1998) Isolation from the rumen of a new acetogenic bacterium phylogenetically closely related to Clostridium difficile. Anaerobe 4:89–94

    Article  CAS  Google Scholar 

  • Robinson JA, Strayer RF, Tiedje JM (1981) Method for measuring dissolved hydrogen in anaerobic ecosystems: application to the rumen. Appl Environ Microbiol 41:545–548

    CAS  Google Scholar 

  • Silivong P, Preston TR, Leng RA (2011) Effect of sulphur and calcium nitrate on methane production by goats fed a basal diet of molasses supplemented with Mimosa (Mimosa pigra) foliage. Livest Res Rural Dev 23:Article #047

    Google Scholar 

  • Simon J, Eichler R, Pisa R, Biel S, Gross R (2002) Modification of heme c binding motifs in the small subunit (NrfH) of the Wolinella succinogenes cytochrome c nitrite reductase complex. FEBS Lett 522:83–87

    Article  CAS  Google Scholar 

  • Smolenski WJ, Robinson JA (1988) In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol Lett 53(2):95–100

    Article  CAS  Google Scholar 

  • Sophal C, Khang DN, Preston TR, Leng RA (2013) Nitrate replacing urea as a fermentable N source decreases enteric methane production and increases the efficiency of feed utilization in Yellow cattle. Livest Res Rural Dev 25. http://www.lrrd.org/lrrd25/7/soph25113.htm. Assessed 15 May 2014

  • Stanier G, Davies A (1981) Effects of the antibiotic monensin and an inhibitor of methanogenesis on in vitro continuous rumen fermentations. Br J Nutr 45:567–578

    Article  CAS  Google Scholar 

  • Takahashi J (1986) Control of ruminal nitrate reduction by sulfur compounds. Asian-Australas J Anim Sci 2:530–532

    Article  Google Scholar 

  • Takahashi J (2001) Nutritional manipulation of methanogenesis in ruminants. Asian-Australas J Anim Sci 14:131–135

    Google Scholar 

  • Takahashi J (2011) Some prophylactic options to mitigate methane emission from animal agriculture in Japan. Asian-Australas J Anim Sci 24:285–294

    Article  CAS  Google Scholar 

  • Takahashi J, Young BA (1991) Prophylactic effect of L cysteine on nitrate- induced alterations in respiratory exchange and metabolic rate in sheep. Anim Feed Sci Technol 35:105–113

    Article  CAS  Google Scholar 

  • Takenaka A, Mitsumori M, Pinares-Patino CS, Ronimus R, Joblin KN (2008) Methane and hydrogen concentrations in the breath of sheep. Aust J Exp Agric 48:lxxxvii–lxxxvii

    Google Scholar 

  • Truong DH, Eghbal MA, Hindmarsh W, Roth SH, O’Brien PJ (2006) Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev 38:733–744

    Article  CAS  Google Scholar 

  • Ungerfeld EM (2013) A theoretical comparison between two ruminal electron sinks. Front Microbiol 4:319

    Article  Google Scholar 

  • Ungerfeld EM, Kohn RA (2006) The role of thermodynamics in the control of ruminal fermentation. In: Sejrsen K, Hvelplund T, Nielsen MO (eds) Ruminant physiology. Wageningen Academic Publishers, Wageningen, pp 55–85

    Google Scholar 

  • Ungerfeld EM, Rust SR, Burnett R (2007) Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can J Microbiol 53:496–503

    Article  CAS  Google Scholar 

  • van Zijderveld SM, Gerrits WJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, Perdok HB (2010) Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci 93:5856–5866

    Article  Google Scholar 

  • van Zijderveld SM, Fonken B, Dijkstra J, Gerrits WJJ, Perdok HB, Fokkink W, Newbold JR (2011) Effects of a combination of feed additives on methane production, diet digestibility, and animal performance in lactating dairy cows. J Dairy Sci 94:1445–1454

    Article  Google Scholar 

  • Wolin MJ, Miller TL, Stewart CS (1997) Microbe-microbe interactions. In: Hobson PJ, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Blackie Acad Profess, London, pp 467–491

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Malik, P.K., Bhatta, R., Gagen, E.J., Sejian, V., Soren, N.M., Prasad, C.S. (2015). Alternate H2 Sinks for Reducing Rumen Methanogenesis. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_19

Download citation

Publish with us

Policies and ethics