Skip to main content

Manipulation of Rumen Microbial Ecosystem for Reducing Enteric Methane Emission in Livestock

  • Chapter
Climate Change Impact on Livestock: Adaptation and Mitigation

Abstract

Rumen has a complex consortium of microorganisms comprising of bacteria, protozoa, fungi, archaea and bacteriophages, which synergistically act upon the lignocellulosic feeds consisting of cereal straws and stovers, green forages and hays, oil cakes, etc., and produce a mixture of short-chain volatile fatty acids and microbial proteins which the animals can use as a source of nutrients. During this bioconversion process, hydrogen is generated in large quantities which combine with carbon dioxide to generate methane by the activity of methanogenic archaea. Depending upon the composition of diet, the animals might lose 5–12 % of gross energy intake in the form of methane, which leads to poor feed conversion efficiency. To avoid this loss of energy in the form of methane, several methods are technically available (e.g. methane analogues, inorganic terminal electron acceptors, ionophore antibiotics, organic unsaturated fatty acids, microbial intervention like use of probiotics and selective removal of ciliate protozoa and plant secondary metabolites), but each one of them has its own merits and demerits. In many cases, the results are based upon only in in vitro experiments. In this chapter, a few of the feed supplements which have a potential to inhibit methanogenesis and have been tested in in vivo experiments will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal N, Kamra DN, Chaudhary LC (2006) Effect of Sapindus mukorossi extract on in vitro methanogenesis and fermentation characteristics in buffalo rumen liquor. J Appl Anim Res 30:1–4

    Google Scholar 

  • Agarwal N, Kamra DN, Chatterjee PN, Kumar R, Chaudhary LC (2008) Changes in microbial profile, methanogenesis and fermentation of green forages with buffalo rumen liquor as influenced by 2-bromoethanesulphonic acid. Asian-Australas J Anim Sci 21:818–823

    Article  CAS  Google Scholar 

  • Agarwal N, Shekhar C, Kumar R, Chaudhary LC, Kamra DN (2009) Effect of peppermint (Mentha piperita) oil on fermentation of feed and methanogenesis in in vitro gas production test. Anim Feed Sci Technol 148:321–327

    Article  CAS  Google Scholar 

  • Altun T, Hunt AÖ, Usta F (2006) Effects of clove oil and eugenol on anaesthesia and some hematological parameters of European eel Anguilla anguilla, L., 1758. J Appl Anim Res 30:171–176

    Article  CAS  Google Scholar 

  • Apisariyakul A, Vanittanakom N, Buddhasukh D (1995) Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol 49:163–169

    Article  CAS  Google Scholar 

  • Asanuma N, Iwamoto M, Hino T (1999) Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci 82:780–787

    Article  CAS  Google Scholar 

  • Ashbey KD, Casey TA, Rasmussen MA, Petrich JW (2001) Steady-state and time-resolved spectroscopy of F420 extracted from methanogen cells and its utility as a marker for fecal contamination. J Agric Food Chem 49:1123–1127

    Article  Google Scholar 

  • Bauchop T, Mountfort DO (1981) Cellulose fermentation by rumen anaerobic fungus in both the absence and presence of rumen methanogens. Appl Environ Microbiol 42:1103–1110

    CAS  Google Scholar 

  • Beauchemin KA, McGinn SM (2006) Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J Anim Sci 84:1489–1496

    CAS  Google Scholar 

  • Begum S, Hassan SI, Ali SN, Siddiqui BS (2004) Chemical constituents from the leaves of Psidium guajava. Nat Prod Res 18:135–140

    Article  CAS  Google Scholar 

  • Bhar R, Haque N (2004) Effect of mode of supplementation of bromochloromethane with alkali treated mahua seed cake on methane production in sheep fed on roughage based diet. In: Proceedings of the X animal nutrition conference, NDRI, Karnal, Nov 9–11

    Google Scholar 

  • Bodas R, Lopez S, Fernandez M, Garcia-Gonzalez R, Rodriguez AB, Wallace RJ, Gonzalez JS (2008) In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim Feed Sci Technol 145:245–258

    Article  CAS  Google Scholar 

  • Brooker SG, Cambie RC, Cooper RC (1981) New Zealand medicinal plants. Heinemann Publishers, Auckland

    Google Scholar 

  • Busquet M, Calsamiglia S, Ferret A, Carro MD, Kamel C (2006) Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci 88:4393–4404

    Article  Google Scholar 

  • Carro MD, Lopez S, Valdes C, Ovejero FJ (1999) Effect of D, L-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Anim Feed Sci Technol 79:279–288

    Article  CAS  Google Scholar 

  • Carulla JE, Kreuzer M, Machmüller A, Hess HD (2005) Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust J Agric Res 56:961–970

    Article  CAS  Google Scholar 

  • Chalupa W (1988) Manipulation of rumen fermentation. In: Haresign W, Cole DJA (eds) Recent developments in ruminant nutrition 2. Butterworths, London, pp 1–18

    Chapter  Google Scholar 

  • Chatterjee PN (2005) Influence of diet and plant secondary compounds on methanogenesis and rumen fermentation pattern. PhD thesis, IVRI Deemed University, Izatnagar, India

    Google Scholar 

  • Chaudhary LC, Kamra DN, Singh R, Agarwal N, Pathak NN (2000) Effect of feeding bentonite on rumen fermentation, enzyme activity and protozoal population in adult buffaloes (Bubalus bubalis). Buffalo J 16:73–79

    Google Scholar 

  • Chaudhury RR (1995) Principles of pharmacology: basic concepts and clinical applications. In: Munson PL, Mueller RA, Breese GR (eds) Chapman & Hall International, New York, pp 1530–1533

    Google Scholar 

  • Choi NJ, Lee SY, Sung HG, Lee SC, Ha JK (2004) Effect of halogenated compounds, organic acids, unsaturated fatty acids on in vitro methane production. Asian-Australas J Anim Sci 17:1255–1259

    Article  CAS  Google Scholar 

  • Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595–601

    CAS  Google Scholar 

  • Craker LE, Giblette J (2002) Chinese medicinal herbs: opportunities for domestic production. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria

    Google Scholar 

  • Elizabeth KM (2005) Antimicrobial activity of Terminalia bellerica. Indian J Clin Biochem 20:150–153

    Article  CAS  Google Scholar 

  • Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658

    Article  CAS  Google Scholar 

  • Gebeyehu A, Mekasha Y (2013) Defaunation: effects on feed intake, digestion, rumen metabolism and weight gain. Wudpecker J Agric Res 2:134–141

    Google Scholar 

  • Hegarty RS (1999) Reducing rumen methane emissions through elimination of rumen protozoa. Aust J Agric Res 50:1321–1328

    Article  Google Scholar 

  • Hess HD, Beuret RA, Lotscher M, Hindrichsen IK, Machmüller A, Carulla JE, Lascano CE, Kreuzer M (2004) Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim Sci 79:177–189

    Google Scholar 

  • Hino T, Asanuma N (2003) Suppression of ruminal methanogenesis by decreasing the substrates available to methanogenic bacteria. Nutr Abstr Rev Ser B 73:1R–8R

    Google Scholar 

  • Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C (2009) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci 92:2809–2821

    Article  CAS  Google Scholar 

  • Hulshof RBA, Berndt JJ, Demarchi A, Gerrits WJJ, Perdok HB (2010) Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. In: Proceedings of the 4th international conference GGAA, Banff, Canada, p 81

    Google Scholar 

  • IPCC (2011) Intergovernmental Panel on Climate Change. UNEP, United Nations, Geneva

    Google Scholar 

  • Iwamoto M, Asanuma N, Hino T (1999) Effects of nitrate combined with fumarate on methanogenesis, fermentation and cellulose digestion by mixed ruminal microbes in in vitro. Anim Sci J 70:471–478

    CAS  Google Scholar 

  • Jaiarj P, Khoohaswan P, Wongkrajang Y, Peungvicha P, Suriyawong P, Saraya MLS, Ruangsomboon O (1999) Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. J Ethnopharmacol 67:203–212

    Article  CAS  Google Scholar 

  • Joblin KN, Matsui H, Naylor GE, Ushida K (2002) Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Curr Microbiol 45:46–53

    Article  CAS  Google Scholar 

  • Kamra DN (2014) Enteric methane mitigation: present status and future prospects. In: Proceedings of the global animal nutrition conference (Glance) 2014. Climate resilient livestock feeding systems for global feed security, NIANP, Bangalore, pp 77–87

    Google Scholar 

  • Kamra DN, Singh R, Agarwal N, Pathak NN (2000) Soapnut (Reetha) as natural defaunating agent – its effect on rumen fermentation and in sacco degradability of jowar hay in buffaloes. Buffalo J 16:99–104

    Google Scholar 

  • Kamra DN, Agarwal N, Chaudhary LC (2006) Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int Congr Ser 1293:156–163

    Article  CAS  Google Scholar 

  • Kamra DN, Patra AK, Chatterjee PN, Kumar R, Agarwal N, Chaudhary LC (2008) Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Aust J Exp Agric 48:175–178

    Article  CAS  Google Scholar 

  • Kapoor A (1997) Antifungal activities of fresh juice and aqueous extracts of turmeric and ginger (Zingiber officinale). J Phytol Res 10:59

    Google Scholar 

  • Kittelmann S, Janssen PH (2011) Characterization of rumen ciliate community composition in domestic sheep, deer and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol Ecosyst 75:468–481

    Article  CAS  Google Scholar 

  • Kumar R, Kamra DN, Agarwal N, Chaudhary LC (2009) Effect of eucalyptus (Eucalyptus globulus) Oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim Nutr Feed Technol 9:237–243

    CAS  Google Scholar 

  • Kumar R, Kamra DN, Agarwal N, Chaudhary LC, Zadbuke SS (2011) Effect of tree leaves containing plant secondary metabolites on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim Nutr Feed Technol 11:103–114

    CAS  Google Scholar 

  • Lin CZ, Raskin L, Stahl DA (1997) Microbial community structure in gastrointestinal tracts of domestic animal: comparative analyses using rRNA targeted oligonucleotide probes. FEMS Microbiol Ecol 22:281–294

    Article  CAS  Google Scholar 

  • Lin M, Schaefer DM, Guo WS, Ren LP, Meng QX (2011) Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas J Anim Sci 24:471–478

    Article  CAS  Google Scholar 

  • Lin B, Lu Y, Salem AZM, Wang JH, Liang Q, Liu JX (2013) Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim Feed Sci Technol 184:24–32

    Article  CAS  Google Scholar 

  • Lopez S, Mcintosh FM, Wallace RJ, Newbold CJ (1999) Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim Feed Sci Technol 78:1–9

    Article  CAS  Google Scholar 

  • Lozoya X, Meckes M, Abou-Zaid M, Tortoriello J, Nozzolillo C, Amason JT (1994) Quercetin glycosides in Psidium guajava L. leaves and determination of spasmolytic principle. Arch Med Res 25:11–15

    CAS  Google Scholar 

  • Machmuller A, Solvia CR, Kreuzer M (2003) Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod Nutr Dev 43:41–55

    Article  Google Scholar 

  • Martin SA, Streeter MN (1995) Effect of malate on in vitro mixed ruminal microorganism fermentation. J Anim Sci 73:2141–2145

    CAS  Google Scholar 

  • Martin SA, Streeter MN, Nisbet DJ, Hill GM, Willamns SE (1999) Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. J Anim Sci 77:1008–1015

    CAS  Google Scholar 

  • May C, Payne AL, Stewart PL, Edgar JA (1995) A delivery system for agents. International Patent Application No. PCT/AU95/00733

    Google Scholar 

  • McCrabb GJ (2000) The relationship between methane inhibition, feed digestibility and animal production in ruminants. In: Methane mitigation international conference 2, 2000, Novasibirsk, Russia. Proceedings of the Novasibirsk, pp 125–131

    Google Scholar 

  • McCrabb GJ, Berger KT, Magner T, May C, Hunter RA (1997) Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust J Agric Res 48:323–329

    Article  CAS  Google Scholar 

  • Montano MF, Chai W, Zinn-Ware TE, Zinn RA (1999) Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets. J Anim Sci 77:780–784

    CAS  Google Scholar 

  • Morton JF (1981) Atlas of medicinal plants of middle America. Bahamas to Yucatan. C.C. Thomas, Springfield

    Google Scholar 

  • Morvan B, Dore J, Rieu-Lesme F, Foucat L, Fonty G, Gouet P (1994) Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiol Lett 117:249–256

    Article  CAS  Google Scholar 

  • Mountfort DO, Asher RA, Bauchop T (1982) Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri. Appl Environ Microbiol 44:128–134

    CAS  Google Scholar 

  • Nanir SP, Kadu BB (1987) Effect of medicinal plant extracts on some fungi. Acta Bot Ind 15:170

    Google Scholar 

  • Newbold CJ, Rode LM (2006) Dietary additives to control methanogenesis in the rumen. Int Congr Ser 1293:138–147

    Article  CAS  Google Scholar 

  • Newbold CJ, Lassalas B, Jouany JP (1995) The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 21:230–234

    Article  CAS  Google Scholar 

  • Nicholson MJ, Evans PN, Joblin KN (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. Microbiol Ecol 54:141–150

    Article  CAS  Google Scholar 

  • Nolan JV, Hegarty RS, Hegarty J, Godwin IR, Woodgate R (2010) Effects of dietary nitrate on rumen fermentation, methane production and digesta kinetics in sheep. Anim Prod Sci 50:801–806

    Article  CAS  Google Scholar 

  • Ouda JO, Newbold CJ, Lopez S, Nelson N, Moss AR, Wallace RJ, Omed H (1999) The effect of acrylate and fumarate on fermentation and methane production in the rumen simulating fermentor (Rusitec). Proc Brit Soc Anim Sci, p 36

    Google Scholar 

  • Patra AK (2012) Estimation of methane and nitrous oxide emissions from Indian livestock. J Environ Monit 14:2673–2684

    Article  CAS  Google Scholar 

  • Patra AK, Yu Z (2013a) Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. J Dairy Sci 96:1782–1792

    Article  CAS  Google Scholar 

  • Patra AK, Yu Z (2013b) Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-4930-x

    Google Scholar 

  • Patra AK, Kamra DN, Agarwal N (2006a) Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim Feed Sci Technol 128:276–291

    Article  CAS  Google Scholar 

  • Patra AK, Kamra DN, Agarwal N (2006b) Effect of plants containing secondary metabolites on in vitro methanogenesis, enzyme profile and fermentation of feed with rumen liquor of buffalo. Anim Nutr Feed Technol 6:203–213

    CAS  Google Scholar 

  • Patra AK, Kamra DN, Agarwal N (2006c) Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int Congr Ser 1293:176–179

    Article  CAS  Google Scholar 

  • Patra AK, Kamra DN, Bhar R, Kumar R, Agarwal N (2011) Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. J Anim Physiol Anim Nutr 95:187–191. doi:10.1111/j.1439-0396.2010.01039.x

    Article  CAS  Google Scholar 

  • Paul RG, Williams AG, Butler RD (1990) Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. J Gen Microbiol 136:1981–1989

    Article  CAS  Google Scholar 

  • Pawar M, Kamra DN, Agarwal N, Chaudhary LC (2014) Effects of essential oils on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Agric Res 3:67–74. doi:10.1007/s40003-014-0092-z

    Article  CAS  Google Scholar 

  • Puchala R, Min BR, Goetsch AL, Sahlu T (2005) The effect of a condensed tannin-containing forage on methane emission by goats. J Anim Sci 83:182–186

    CAS  Google Scholar 

  • Rastogi RP, Mehrotra BN (1993) Compendium of Indian medicinal plants, vol 3, 1980–1984. Central Drug Research Institute, Lucknow and Publications and Information Directorate, New Delhi, p 831

    Google Scholar 

  • Rouviere PE, Wolfe RS (1988) Novel biochemistry of methanogenesis. J Biol Chem 263:7913–7916

    CAS  Google Scholar 

  • Sakthivel PC, Kamra DN, Agarwal N, Chaudhary LC (2012) Effect of sodium nitrate and nitrate reducing bacteria on in vitro methane production and fermentation with buffalo rumen liquor. Asian-Australas J Anim Sci 25:812–817

    Article  CAS  Google Scholar 

  • Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104:10643–10648

    Article  CAS  Google Scholar 

  • Sar C, Santoso B, Gamo Y, Kobayash T, Shiozaki S, Kimura K, Mizukoshi H, Arai I, Takahashi J (2004a) Effects of combination of nitrate with β 1–4 galacto-oligosaccharides and yeast (Candida kefyr) on methane emission from sheep. Asian-Australas J Anim Sci 17:73–79

    Article  CAS  Google Scholar 

  • Sar C, Santoso B, Mwenya B, Gamo Y, Kobayashi T, Morikawa R, Kimura K, Mizukoshi H, Takahashi J (2004b) Manipulation of rumen methanogenesis by the combination of nitrate with β 1–4 galacto-oligosaccharides or nisin in sheep. Anim Feed Sci Technol 115:129–142

    Article  CAS  Google Scholar 

  • Sar C, Mwenya B, Pen B, Takaura K, Morikawa R, Tsujimoto A, Kuwaki K, Isogai N, Shinzato I, Asakura Y, Toride Y, Takahashi J (2005) Effect of ruminal administration of Escherichia coli wild type or a genetically modified with enhanced nitrite reductase activity on methane emission and nitrate toxicity in nitrate infused sheep. Br J Nutr 94:691–697

    Article  CAS  Google Scholar 

  • Sarvanan TS (2000) Effect of bromochloromethane on methanogenesis, nutrient utilization and growth rate of lambs. MVSc thesis, Indian Veterinary Research Institute, Izatnagar, India

    Google Scholar 

  • Sarvanan TS, Haque N, Lal M, Kamra DN (2000) Third biennial conference of animal nutrition association, Hisar, India, p 124

    Google Scholar 

  • Sharma VD, Sethi MS, Kumar A, Rarotra JR (1977) Antibacterial property of Allium sativum Linn.: in vivo and in vitro studies. Indian J Exp Biol 15:466–468

    CAS  Google Scholar 

  • Sharp R, Ziemer CJ, Stern MD, Stahl DA (1998) Taxon specific associations between protozoal and methanogen populations in the rumen and in a model rumen system. FEMS Microbiol Ecol 26:71–78

    Article  CAS  Google Scholar 

  • Silivong P, Preston TR, Leng RA (2011) Effect of sulphur and calcium nitrate on methane production by goats fed a basal diet of molasses supplemented with mimosa (Mimosa pigra) foliage. Livest Res Rural Dev 23:Article #58. Retrieved from http://www.lrrd.org/lrrd23/3/sili23058.htm

  • Simon JE, Chadwick AF, Craker LE (1984) Herbs – an indexed bibliography, 19711980. Elsevier, Amsterdam

    Google Scholar 

  • Singh GP, Mohini M (1999) Effect of different levels of monensin in diet on rumen fermentation, nutrient digestibility and methane production in cattle. Asian-Australas J Anim Sci 12:1214–1221

    Google Scholar 

  • Singh S, Kushwaha BP, Nag SK, Bhattacharya S, Gupta PK, Mishra AK, Singh A (2012) Assessment of enteric methane emission of Indian livestock in different agro-ecological regions. Curr Sci 102:1017–1027

    CAS  Google Scholar 

  • Sinha RK (1996) Ethnobotany – the renaissance of traditional herbal medicine. INA Shree Publishers, Jaipur, p 242

    Google Scholar 

  • Sivarajan VV, Balachandran I (1996) Ayurvedic drugs and their plant sources. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, p 570

    Google Scholar 

  • Skillman LC, Evans PN, Stromp C, Joblin KN (2006) 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett Appl Microbiol 42:222–228

    Article  CAS  Google Scholar 

  • Sophea I, Preston TR (2011) Effect of different levels of supplementary potassium nitrate replacing urea on growth rates and methane production in goats fed rice straw, mimosa foliage and water spinach. Livest Res Rural Dev 23: Article #71. Retrieved from http://www.lrrd.org/lrrd23/4/soph23071.htm

  • Sophea I, Borin K, Leng RA, Preston TR (2010) Effect of different levels of supplementary potassium nitrate replacing urea on growth rates and methane production in goats fed sugar palm-soaked rice straw and mimosa foliage. MSc thesis, MEKARN-SLU. http://www.mekarn.org/MSC2008-10/theses/sophea.htm

  • Stange RR Jr, Midland SL, Eckert JW, Sims JJ (1993) An antifungal compound produced by grapefruit and Valencia orange after wounding of the peel. J Nat Prod 56:1627–1629

    Article  Google Scholar 

  • Suguna L, Singh S, Sivakumar P, Sampath P, Chandrakasan G (2002) Influence of Terminalia chebula on dermal wound healing in rats. Phytother Res 16:227–231

    Article  Google Scholar 

  • Swamy M, Bhattacharya S (2006) Budgeting anthropogenic greenhouse gas emission from Indian livestock using country specific emission coefficients. Curr Sci 91:1340–1353

    CAS  Google Scholar 

  • Tedeschi LO, Fox DG, Tylutki TP (2003) Potential environmental benefits of ionophores in ruminant diets. J Environ Qual 32:1591–1602

    Article  CAS  Google Scholar 

  • Van Nevel C, Demeyer D (1996) Control of rumen methanogenesis. Environ Monit Assess 42:73–97

    Article  Google Scholar 

  • Van Zijderveld SM, Gerrits WJJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, Perdok HB (2010) Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci 93:5856–5866

    Article  Google Scholar 

  • Wood TA, Wallace RJ, Rowe A, Price J, Yanez-Ruiz DR, Murray P, Newbold CJ (2009) Encapsulated fumaric acid as a feed ingredient to decrease ruminal methane emissions. Anim Feed Sci Technol 152:62–71

    Article  Google Scholar 

  • Wright A-DG, Auckland CH, Lynn DH (2007) Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 73:4206–4210

    Article  CAS  Google Scholar 

  • Yang CJ, Mao SY, Long LM, Zhu WY (2012) Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios. Animal 6:1788–1794

    Article  CAS  Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Kamra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kamra, D.N., Agarwal, N., Chaudhary, L.C. (2015). Manipulation of Rumen Microbial Ecosystem for Reducing Enteric Methane Emission in Livestock. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_16

Download citation

Publish with us

Policies and ethics