Skip to main content

Immobilisation and Biosensors

  • Chapter
  • First Online:
Applied Microbiology
  • 3956 Accesses

Abstract

Immobilisation is defined as the technique of fixing the cells, organelles or enzymes/other proteins (monoclonal antibodies) onto a solid support system, into a solid support matrix or retained by a membrane, in order to maintain stability and make possible their repeated or continued use. The immobilised cell technologies comprise of modifications of the technique developed for enzymes. However the microbial size has a significant impact on these techniques. The immobilisation of microbial cells occurs as a natural phenomenon or through artificial process. The artificially immobilised cells are allowed restricted growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Reading

  • Bringhurst RM, Cardos ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization of Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci U S A 98:4540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casavant NG, Thompson D, Beattle GA, Phillips GJ, Halverson LJ (2003) Use of site specific recombination based on biosensor for detecting bioavailable toluene and related compounds on roots. Environ Microbiol 5:238

    Article  CAS  PubMed  Google Scholar 

  • Chalova VI, Zabala-Diaz IB, Woodward CL, Ricke SC (2008) Development of a whole cell green fluorescent sensor for lysine quantification. World J Microbiol Biotechnol 24:353–359

    Article  CAS  Google Scholar 

  • Chee GJ, Nomura Y, Ikebukuro K, Karube I (2005) Development of a photocatalytic biosensor for evaluation of biochemical oxygen demand. Biosens Bioelectron 21:67–73

    Article  CAS  PubMed  Google Scholar 

  • Cheetham PSJ, Garrett C, Clark J (1985) Isomaltulose production using immobilized cells. Biotechnol Bioeng 27:471–481

    Article  CAS  Google Scholar 

  • Choi HS, Shin MS, Kim JA (1999) Enhancement of microbial adhesion on chemically modified polyethylene surface. Environ Eng Res 4:127–133

    Google Scholar 

  • Chouteau C, Dzyadevych S, Durrien C, Chovelon JM (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticide detection in water samples. Biosens Bioelectron 21:273–281

    Article  CAS  PubMed  Google Scholar 

  • Date A, Pasini P, Daunert S (2007) Construction of spores for portable bacterial whole cell biosensing systems. Anal Chem 79:9391–9397

    Article  CAS  PubMed  Google Scholar 

  • Dawson JJC, Iroegbu CO, Maciel H, Paton GI (2008) Application of luminescent biosensors for the monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104:141–151

    CAS  PubMed  Google Scholar 

  • Emelyanova EV, Reshetilov AN (2002) Rhodococcus erythropolis as the receptor of cell based sensor for 2, 4-dinitrophenol detection: effect of co-oxidation. Process Biochem 37:683–692

    Article  CAS  Google Scholar 

  • Fiorentino G, Ronca R, Bartolucci S (2009) A novel E. coli biosensor for selecting aromatic aldehydes based on inducible archaeal promoter fused with green fluorescent protein. Appl Microbiol Biotechnol 82:67–77

    Article  CAS  PubMed  Google Scholar 

  • Gaberlein S, Spener F, Zaborosch C (2000) Microbial and cytoplasmic membrane based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54:652

    Article  CAS  PubMed  Google Scholar 

  • Galindo E, Bautista D, Garcia JL, Quintero R (1990) Microbial sensors for penicillin’s using a recombinant strain of E. coli. Enzym Microb Technol 12:642

    Article  CAS  Google Scholar 

  • Held M, Schuhmann W, Jahreis K, Schmidt HL (2002) Microbial biosensor array with transport mutants of Escherichia coli K12 for simultaneous determination of mono and disaccharides. Biosens Bioelectron 17:1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Hillson NJ, Andersen GL, Shapiro L (2007) Caulobacter crescentus as a whole cell uranium biosensor. Appl Environ Microbiol 73:7615–7621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jha SK, Kanungo M, Math A, D’ Souza SF (2009) Entrapment of live microbial cells in electropolymerized polyaniline and their use as a urea biosensor. Biosens Bioelectron 24:2637–2642

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Tang M, Chen X, Qi L, Dong S (2003) Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material. Biosens Bioelectron 18:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability in plants assessed with whole cell green fluorescent protein based bacterial biosensor. Microbiology 146:2435–2445

    CAS  PubMed  Google Scholar 

  • Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3:39–48

    CAS  PubMed  Google Scholar 

  • Kitagawa Y, Ameyama M, Nakashima K, Tamaiya E, Karube I (1987) Amperometric alcohol sensor based on immobilized bacteria cell membrane. Analyst 112:1747–1749

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier S, Mancuso M, Deepthike U, Tecon R, van der Meer JR, Harms H, Wells M (2008) Comparison of naphthalene bioavailability determined by whole cell bioassay and availability determined by extraction of Tenax. Environ Pollut 156:803–808

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kundu S, Pakshirajan K, Dasu VV (2008) Cephalosporin determination with a novel microbial biosensor based on permeabilized Pseudomonas areugionosa whole cells. Appl Biochem Biotechnol 151:653–664

    Article  CAS  PubMed  Google Scholar 

  • Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae. Biosens Bioelectron 15:211–219

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  PubMed  Google Scholar 

  • Li FX, Li FY, Ho CL, Liao VHC (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensor for the detection of bioavailable toluene and related compounds. Environ Pollut 152:123–129

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani A, Mulchandani P, Kaneva I, Chen W (1998) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface expressed organophosphorus hydrolase 1. Potentiometric microbial electrode. Anal Chem 70:4140–4145

    Article  CAS  PubMed  Google Scholar 

  • Navarro JM, Durand GC (1977) Modification of yeast by immobilization onto a porous glass. Eur J Appl Microbiol 4:243–254

    Article  CAS  Google Scholar 

  • Norman A, Hansen LH, Sorensen SJ (2006) A flow cytometry optimized assay using an SOS-green fluorescent protein whole cell biosensor for the detection of genotoxins in complex environments. Mutat Res Genet Toxicol Environ Mutagen 603:164–172

    Article  CAS  Google Scholar 

  • Okhi A, Shinohara K, Ito O, Naka K, Maeda S, Sato T, Akano H, Kato N, Kawamura Y (1994) A BoD sensor using Klebsiella oxytoca AS1. Int J Environ Anal Chem 56:261–269

    Article  Google Scholar 

  • Okochi M, Mima k, Miyata M, Shinozaki Y, Haraguchi S, Fujisawa M, Kaneka M, Masukata T, Matsunaga T (2004) Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant. Biotechnol Bioeng 87:905–911

    Article  CAS  PubMed  Google Scholar 

  • Paton GI, Reid BJ, Sempled KT (2009) Application of a luminescence based biosensor for assessing naphthalene biodegradation in soils from a gas manufacturing plant. Environ Pollut 157:1643–1648

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence based glucose sensors. Biosens Bioelectron 20:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar C, Rajasekar R, Narasimhan KC (2000) Acetobacter peroxydans based electrochemical biosensor for hydrogen peroxide. Bull Electrochem 16:25–28

    CAS  Google Scholar 

  • Rasmussen LD, Sørensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–646

    Article  CAS  Google Scholar 

  • Reshetilov AN, Trotsenko JA, Morozova NO, Iliasov PU, Ashin VV (2001) Characteristics of Gluconobacter oxydans B-1280 and Pichia methanolica MN4 cell based biosensor for the detection of ethanol. Process Biochem 36:1015–1020

    Article  CAS  Google Scholar 

  • Rotariu L, Bala C (2003) New type of ethanol microbial biosensor based on a highly sensitive amperometric oxygen electrode and yeast cells. Anal Lett 36:2459–2471

    Article  CAS  Google Scholar 

  • Rotariu L, Bala C, Magearu V (2000) Use of yeast cells for selective determination of glucose. Rev Roum Chem 45:21–26

    CAS  Google Scholar 

  • Rotariu L, Bala C, Magearu V (2002) Yeast cell sucrose biosensor based on a potentiometric oxygen electrode. Anal Chim Acta 458:215–222

    Article  CAS  Google Scholar 

  • Rotariu L, Bala C, Magearu V (2004) New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Anal Chim Acta 513:119–123

    Article  CAS  Google Scholar 

  • Seki A, Kawakubo K, Iga M, Nomura S (2003) Microbial assay for tryptophan using silicon based transducer. Sensors Actuators B 94:253–256

    Article  CAS  Google Scholar 

  • Shapiro E, Baneyx F (2007) Stress-activated bioluminescent Escherichia coli sensors for antimicrobial agents detection. J Biotechnol 132:487–493

    Article  CAS  PubMed  Google Scholar 

  • Stolper P, Faber S, Weller MG, Knopp D, Niessner R (2008) Whole cell luminescence based flow through biodetector for toxicity testing. Anal Bioanal Chem 390:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Tauber M, Rosen R, Belkin S (2001) Whole-cell biodetection of halogenated organic acids. Talanta 55:959–964

    Article  CAS  PubMed  Google Scholar 

  • Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    Article  CAS  PubMed  Google Scholar 

  • Tkac J, Vostiar I, Gemanier P, Sturdik E (2002) Monitoring ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochemistry 56:127–129

    Article  CAS  PubMed  Google Scholar 

  • Van Haecht JL, Bolipombo M, Rouxhet PG (1985) Immobilization of Saccharomyces cerevisiae by adhesion treatment of cells by Al ions. Biotechnol Bioeng 27:217–224

    Article  PubMed  Google Scholar 

  • Verma N, Singh M (2003) A disposable microbial based sensor for quality control in milk. Biosens Bioelectron 18:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Virolainen NE, Pikkemaat MG, Elferink JWA, Karp MT (2008) Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meet with Bioluminescent biosensor bacteria. J Agric Food Chem 56:11065–11070

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Saxena, S. (2015). Immobilisation and Biosensors. In: Applied Microbiology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2259-0_12

Download citation

Publish with us

Policies and ethics