Skip to main content

A New Approach for Color Distorted Region Removal in Diabetic Retinopathy Detection

  • Conference paper
  • First Online:
Advancements of Medical Electronics

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

Automatic detection of Diabetic Retinopathy (DR) abnormalities in fundus retinal images can assist in early diagnosis and timely treatment of DR, to avoid further deterioration of vision. Many Fundus Retinal images contain color distorted regions originated due to noise, extremely uneven or poor illumination and improper exposure of fundus camera. These regions are required to be removed to avoid poor results for feature extraction and erroneous DR abnormality detections, as they introduce high amount of false positive detections. In this paper, we have proposed a totally automatic method for segmentation and removal of the color distorted regions in retinal fundus images, using modified Valley Emphasized Automatic thresholding method and morphological operations. The proposed algorithm accurately defines the well illuminated color undistorted retinal region inside the input fundus image, from which both the normal and disease features can be successfully detected. The proposed method has yield an average accuracy of more than 95 % when tested over around 700 fundus images from diaretdb0, diaretdb1, STARE, HRFDB and DRIVE databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sussman EJ, Tsiaras WG, Soper KA (1982) Diagnosis of diabetic eye disease. JAMA Ophthalmol 247(23):3231–3234

    Google Scholar 

  2. Rema M, Pradeepa R (2007) Diabetic retinopathy: an Indian perspective. Indian J Med Res 125:297–310

    Google Scholar 

  3. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526

    Article  Google Scholar 

  4. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 102:527–532

    Article  Google Scholar 

  5. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes, estimates for the year 2000 and projections for 2030. Diab Care 27:1047–1053

    Article  Google Scholar 

  6. Sinthanayothin C, Boyce JF, Cook HL, Williamson TH (1999) Automated localization of the optic disc, fovea and retinal blood vessels from digital color fundus images. Br J Ophthalmol 83(8):231–238

    Article  Google Scholar 

  7. Foracchia M, Grisan E, Ruggeri A (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 23(10):1189–1195

    Article  Google Scholar 

  8. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269

    Article  Google Scholar 

  9. Lee SC, Lee ET, Kingsley RM, Wang Y, Russell D, Klein R, Warner A (2001) Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts. Graefe’s Arch Clin Exp Ophthalmol 119(4):509–515

    Google Scholar 

  10. Spencer T, Phillips RP, Sharp PF, Forrester JV (1991) Automated detection and quantification of micro-aneurysms in fluoresce in angiograms. Graefe’s Arch Clin Exp Ophthalmol 230(1):36–41

    Article  Google Scholar 

  11. Frame AJ, Undill PE, Cree MJ, Olson JA, McHardy KC, Sharp PF, Forrester JF (1998) A comparison of computer based classification methods applied to the detection of micro aneurysms in ophthalmic fluoresce in angiograms. Comput Biol Med 28(3):225–238

    Article  Google Scholar 

  12. Osareh A, Mirmehdi M, Thomas B, Markham R (2001) Automatic recognition of exudative maculopathy using fuzzy c-means clustering and neural networks. In: Proceedings of conference on medical image understanding analysis, pp 49–52

    Google Scholar 

  13. Phillips R, Forrester J, Sharp P (1993) Automated detection and quantification of retinal exudates. Graefe’s Arch Clin Exp Ophthalmol 231(2):90–94

    Article  Google Scholar 

  14. Goldbaum MH, Katz NP, Chaudhuri S, Nelson M, Kube P (1990) Digital image processing for ocular fundus images. Ophthalmol Clin N Am 3(3):447–466

    Google Scholar 

  15. Osareh A, Mirmehdi M, Thomas B, Markham R, Classification and localization of diabetic-related eye disease. In: Proceedings of 7th european conference on computer vision, vol 2353. Springer LNCS, Copenhagen, Denmark, pp 502–516

    Google Scholar 

  16. Usher D, Dumskyj M, Himaga M, Williamson TH, Nussey S, Boyce J (2003) Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening, diabetes UK. Diab Med 21(1):84–90

    Article  Google Scholar 

  17. Sinthanayothin C, Kongbunkiat V, Ruenchanachain SP, Singlavanija A (2003) Automated screening system for diabetic retinopathy. In: Proceedings of the 3rd international symposium on image and signal processing and analysis, pp 915–920

    Google Scholar 

  18. Firdausy K, Sutikno T, Prasetyo E (2007) Image enhancement using contrast stretching on RGB and IHS digital image. TELKOMNIKA 5(1):45–50

    Google Scholar 

  19. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, New Jersey

    Google Scholar 

  20. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  21. Hoover A, Goldbaum M (2003) locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. Trans Med Imaging 22(8):951–958

    Article  Google Scholar 

  22. Jamal I, Akram MU, Tariq A (2012) Retinal image preprocessing: background and noise segmentation. TELKOMNIKA 10(3):537–544

    Google Scholar 

  23. Kuivalainen M (2005) Retinal image analysis using machine vision, Master’s Thesis, 6 June 2005, pp 48–54

    Google Scholar 

  24. Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, Ginneken BV (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509

    Article  Google Scholar 

  25. Kauppi T, Kamarainen V, Lensu JK, Sorri L, Uusitalo I, Kälviäinen H, Pietilä J (2006) DIARETDB0, evaluation database and methodology for diabetic retinopathy algorithms, Technical Report

    Google Scholar 

  26. Kauppi T, Kamarainen V, Lensu JK, Sorri L, Raninen A, Voutilainen R, Uusitalo I, Kälviäinen H, Pietilä HJ (2007) DIARETDB1, diabetic retinopathy database and evaluation protocol, Technical Report

    Google Scholar 

  27. Köhler T, Budai A, Kraus M, Odstrcilik J, Michelson G, Hornegger J (2013) Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: 26th IEEE international symposium on computer-based medical systems, Porto

    Google Scholar 

  28. Hui-Fuang N (2006) Automatic thresholding for defect detection. Pattern Recogn Lett 27(15):1644–1649

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilarun Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Mukherjee, N., Dutta, H.S. (2015). A New Approach for Color Distorted Region Removal in Diabetic Retinopathy Detection. In: Gupta, S., Bag, S., Ganguly, K., Sarkar, I., Biswas, P. (eds) Advancements of Medical Electronics. Lecture Notes in Bioengineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2256-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2256-9_9

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2255-2

  • Online ISBN: 978-81-322-2256-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics