Advertisement

Bilateral Filtering in Wavelet Domain for Synthesis of Flash and No-Flash Image Pairs

  • Abhijeet Kumar Sinha
  • Vikrant Bhateja
  • Anand Sharma
  • S. C. Satapathy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)

Abstract

This paper addresses an idea to blend the quality ascribes of flash and no-flash image pairs; yielding a synthesized image, better in visual quality than the original ones. Bilateral filtering algorithm is employed in this work to subdue the effect of noise superimposed at the acquisition stage without fading of details. The proposed synthesis approach performs sub-band decomposition of denoised (flash and no-flash images processed via bilateral filter) images using wavelets followed by the synthesis of coefficients via max-max decision rule. Simulations are carried out on flash/no-flash image pairs contaminated with different levels of additive Gaussian noise and are evaluated using a no-reference image quality parameter. Significant improvement in quality of the synthesized image has been observed in comparison to original ones.

Keywords

Flash image No-flash image Bilateral filtering Discrete wavelet transform (DWT) 

References

  1. 1.
    Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23(3), 673–678 (2004)Google Scholar
  2. 2.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A novel full-reference image quality index for color images. In: Proceedings of the International Conference on Information Systems Design and Intelligent Applications (INDIA 2012), India, pp. 245–253 (2012)Google Scholar
  3. 3.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A new model for performance evaluation of denoising algorithms based on image quality assessment. In: Proceedings of International Information Technology Conference and Exhibition, India, pp. 5–10 (2012)Google Scholar
  4. 4.
    Shukla, A.K., Bhateja, V., Verma, R.L., Alam, M.: An improved directional weighted median filter for restoration of images corrupted with high density impulse noise. In: Proceedings of International Conference on Reliability, Optimization and Information Technology, India, pp. 506–511 (2014)Google Scholar
  5. 5.
    Bhateja, V., Malhotra, C., Rastogi, K., Verma, A.: Improved decision median filter for video sequences corrupted by impulse noise. In: Proceedings International Conference on Signal Processing and Integrated Netwroks, pp. 716–721. IEEE, India (2014)Google Scholar
  6. 6.
    Bhateja, V., Rastogi, K., Verma, A., Malhotra, C.: A non-iterative adaptive median filter for image denoising. In: Proceedings of International Conference on Signal Processing and Integrated Netwroks (SPIN-2014), pp. 113–118. IEEE, Noida (UP), India (2014)Google Scholar
  7. 7.
    Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23(3), 664–672 (2004)Google Scholar
  8. 8.
    Rank, K., Unbehauen, R.: An adaptive recursive 2-D filter for removal of Gaussian noise in images. IEEE Trans. Image Processing 1(3), 431–436 (1992)Google Scholar
  9. 9.
    Nodes, T.A., Gallagher, N.C., Jr.: The output distribution of median type filters. IEEE Trans. Commun. 32(5), 532–541 (1984)Google Scholar
  10. 10.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)Google Scholar
  11. 11.
    Shui, P.L.: Image denoising algorithm via doubly local wiener filtering with directional windows in wavelet domain. In: IEEE Signal Proc. Lett. 12(10), 681–684 (2005)Google Scholar
  12. 12.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bhateja, V., Verma, A., Rastogi, K., Malhotra, C., Satapathy, S.C.: Performance improvement of decision median filter for suppression of salt and pepper noise. In: Proceedings of International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2014) 264, pp. 287–297. Springer, Trivandrum (Kerala), India (2014)Google Scholar
  14. 14.
    Bhateja, V., Singh, G., Srivastava, A.: A novel weighted diffusion filtering approach for speckle suppression in ultrasound images. In: Proceedings International Conference on Frontiers in Intelligent Computing Theory and Applications, India 247, pp. 459–466 (2013)Google Scholar
  15. 15.
    Gupta, A., Tripathi, A., Bhateja, V.: De-speckling of SAR images via an improved anisotropic diffusion algorithm. In: Proceedings of International Conference on Frontiers in Intelligent Computing Theory and Applications, AISC 199, pp. 747–754 (2012)Google Scholar
  16. 16.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bhateja, V., Tiwari, H., Srivastava, A.: A non-local means filtering algorithm for restoration of rician distributed MRI. In: Proceedings 49th Annual Convention of Computer Society of India (CSI 2014), Hyderabad, India, vol. xx, pp. xx, December (2014)Google Scholar
  18. 18.
    Mustafa, Z.A., Kadah, Y.M.: Multi resolution bilateral filter for MR image denoising. In: Proceedings of 1st Middle East Conference on Biomedical Engineering, pp. 180–184 (2011)Google Scholar
  19. 19.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE International Conference on Computer Vision, pp. 839–846 (1998)Google Scholar
  20. 20.
    Zhang, B., Allebach, J.P.: Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 17(5), 664–678 (2008)Google Scholar
  21. 21.
    Bhateja, V., Misra, M., Urooj, S., Lay-Ekuakille, A.: Bilateral despeckling filter in homogeneity domain for breast ultrasound images. In: Proceedings of 3rd International Conference on Advances in Computing, Communications and Informatics, India, pp. 1027–1032 (2014)Google Scholar
  22. 22.
    Aleksic, M., Smirnov, M., Goma, S.: Novel bilateral filter approach: image noise reduction with sharpening. Proc. SPIE Int. Soc. Opt. Eng. 6069, 141–147 (2006)Google Scholar
  23. 23.
    Elad, M.: On the origin of the bilateral filter and the ways to improve it. IEEE Trans. Image Process. 11(10), 1141–1151 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Labate, D., Foresta, F.L., Occhiuto, G., Morabito, F.C., Lay-Ekuakille, A., Vergallo, P.: Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: a comparison. Sensors J. IEEE 13(7), 2666–2674 (2013)Google Scholar
  25. 25.
    Vergallo, P., Lay-Ekuakille, A., Giannoccaro, N.I., Trabacca, A., Morabito, F.C, Urooj, S., Bhateja, V.: Identification of visual evoked potentials in EEG detection by emprical mode decomposition. In: Proceedings of 11th International Multi-Conference on Systems, Signals and Devices—Conference on Sensors, Circuits and Instrumentation Systems, Spain, pp. 1–5 (2014)Google Scholar
  26. 26.
    Campolo, M., Labate, D., La Foresta, F., Morabito, F.C., Lay-Ekuakille, A., Vergallo, P.: ECG-derived respiratory signal using empirical mode decomposition. In: Proceedings of (MeMeA), International Workshop on Medical Measurements and Applications, pp. 399–403 (2011)Google Scholar
  27. 27.
    Lay-Ekuakille, A., Trotta, A.: Comparison between adjustable window technique and wavelet method in processing backscattering lidar signal. In: Remote Sensing. Int. Society Opt. Photon. pp. 72–82 (2004)Google Scholar
  28. 28.
    Singh, S.P., Urooj, S., Ekuakille, A.L.: Rotational-invariant texture analysis using radon and polar complex exponential transform. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing Theory and Applications, pp. 325–333 (2014)Google Scholar
  29. 29.
    Krishn, A., Bhateja, V., Sahu, A.: Medical image fusion using combination of PCA and wavelet analysis. In: Proceedings of 3rd International Conference on Advances in Computing, Communications and Informatics, India, pp. 1027–1032 (2014)Google Scholar
  30. 30.
    Krishn, A., Bhateja, V., Sahu, A.: PCA based medical image fusion in ridgelet domain. In: Proceedings of 3rd International Conference on Frontier in Intelligent Computing Theory and Application, India, vol. xx, pp. xx (2014)Google Scholar
  31. 31.
    Bhateja, V., Verma, R., Mehrotra, R., Urooj, S., Lay-Ekuakille, A., Verma, V.D: A Composite wavelets and morphology approach for ECG noise filtering. In: Proceedings of 5th International Conference on Pattern Recognition and Machine Intelligence, India, 8251, pp. 361–366 (2013)Google Scholar
  32. 32.
    Sahu, D.K., Parsai, M.P.: Different image fusion techniques—a critical review. Int. J. Modern Eng. Res. 2(5), 4298–4301 (2012)Google Scholar
  33. 33.
    Gupta, P., Tripathi, N., Bhateja, V.: Multiple distortions pooling image quality assessment. Int. J. Convergence Comput. 1(1), 60–72 (2013)CrossRefGoogle Scholar
  34. 34.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A HVS based perceptual quality estimation measure for color images. ACEEE Int. J. Signal Image Proc. 3(1), 63–68 (2012)Google Scholar
  35. 35.
    Bhateja, V., Kalsi, A., Shrivastava, A., Lay-Ekuakille, A.: A reduced reference distortion measure for performance improvement of smart cameras. IEEE Sensors J. xx, 1–10 (2014)Google Scholar
  36. 36.
    Bhateja, V., Srivastava, A., Kalsi, A.: Fast SSIM index for color images employing reduced-reference evaluation. In: Proceedings of International Conference on Frontiers in Intelligent Computing Theory and Applications, India, 247, pp. 451–458 (2013)Google Scholar
  37. 37.
    Trivedi, M., Jaiswal, A., Bhateja, V.: A no-reference image quality index for contrast and sharpness measurement. In: Proceedings of 3rd International Advance Computing Conference, India, pp. 1234–1239 (2013)Google Scholar
  38. 38.
    Bhateja, V., Srivastava, A., Singh, G., Singh, J.: Despeckling of ultrasound images using non-linear conductance function. In: Proceedings of International Conference on Signal Processing and Integrated Netwroks, India, pp. 722–726 (2014)Google Scholar
  39. 39.
    Singh, S., Jain A., Bhateja V.: A comparative evaluation of various despeckling algorithms for medical images. In: Proceedings of International Information Technology Conference and Exhibition, India, pp. 32–37 (2012)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Abhijeet Kumar Sinha
    • 1
  • Vikrant Bhateja
    • 1
  • Anand Sharma
    • 1
  • S. C. Satapathy
    • 2
  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional CollegesLucknowIndia
  2. 2.Department of Computer ScienceANITSVishakhapatnamIndia

Personalised recommendations