Identification and Recognition of Defects in Civil Structures Using Non-destructive Technique

  • Devansh Gaur
  • Shalini Saxena
  • Dhiraj Sangwan
  • Jagdish Lal Raheja
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)


Defects, voids and cracks are the most ineffective components of buildings and bridges, respectively. The steady state vibrations and involuntarily happenings like earth quake triggers events such as accident and incident. The presence of air gaps or voids caused by the shifting of components like steel rods accelerates towards such catastrophic failure. Infrared thermography based on remote sensing of radiation energy from concrete surface, is a non-contact technique allows the visualization of concrete surface temperature as two-dimensional thermo-grams. The paper proposes a robust technique of analysis of the defect region using infrared image and estimate the area, shape and location of defect along with its depth.


Infrared thermography Minimal area Segmentation Douglas-Peucker algorithm Depth 



Authors would like to thank the Director of CSIR-CEERI, Pilani, Rajasthan, India for providing research facilities and for his active encouragement and support.


  1. 1.
    Mulaveesala, R., et al.: Nondestructive evaluation of concrete structures by nonstationary thermal wave imaging. In: SPIE Defense, Security, and Sensing. International Society for Optics and Photonics (2012)Google Scholar
  2. 2.
    Maldague, X.: Applications of infrared thermography in non-destructive evaluation. In: Rastogi, P. (ed.) Trends in Optical Nondestructive Testing, pp. 591–609. Elsevier, Oxford (2000)Google Scholar
  3. 3.
    Ibarra-Castanedo, C., et al.: Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, pp. 325–348. World Scientific Publishing, Singapore (2007). ISBN e-ISBN 978-981-277-094-3CrossRefGoogle Scholar
  4. 4.
    Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79(5), 2694–2698 (1996)CrossRefGoogle Scholar
  5. 5.
    Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71(8), 3962–3965 (1992)CrossRefGoogle Scholar
  6. 6.
    Ju, Y., Saka, M., Uchimura, Y.: Evaluation of the shape and size of 3D cracks using microwaves. NDT and E Int. 38(8), 726–731 (2005)CrossRefGoogle Scholar
  7. 7.
    Maierhofer, C., et al.: Application of impulse-thermography for non-destructive assessment of concrete structures. Cement Concr. Compos. 28(4), 393–401 (2006)CrossRefGoogle Scholar
  8. 8.
    Maldague, X., Ziadi, A., Klein, M.: Double pulse infrared thermography. NDT and E Int. 37(7), 559–564 (2004)CrossRefGoogle Scholar
  9. 9.
    Montanini, R., Aliquò, S.: Nondestructive evaluation of plexiglas materials using lock-in and pulse phase infrared thermography. In: IMEKO World Congress Fundamental and Applied Metrology, p. 6 (2009)Google Scholar
  10. 10.
    Rantala, J., Wu, D., Busse, G.: NDT of polymer materials using lock-in thermography with water-coupled ultrasonic excitation. NDT and E Int. 3(1), 43–49 (1998)CrossRefGoogle Scholar
  11. 11.
    Salerno, A., Dillenz, A., Wu, D., Rantala, J., Busse, G.: Progress in ultrasound lockin thermography. Quant. Infrared Thermogr. QIRT 98, 154–160 (1998)Google Scholar
  12. 12.
    Stuart, B.: Infrared Spectroscopy. Fundamentals and Applications. Wiley, New York (2004). ISBN ISBN 0470854278Google Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhou, S., Yang, P., Xie, W.: Infrared image segmentation based on otsu and genetic algorithm. In: IEEE 978-1-61284-774-0/11, pp. 5421–5424 (2011)Google Scholar
  15. 15.
    Williams, T.L.: Thermal Imaging Cameras: Characteristics and Performance. Taylor & Francis Group, Boca Raton (2009). ISBN ISBN 9781420071856CrossRefGoogle Scholar
  16. 16.
    Gonzalez, R.C., Richard, E.W.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle (2008). ISBN 9780131687288Google Scholar
  17. 17.
    Hasan, M.M., Pramod K.M.: Improving morphology operations for 2D hole filling algorithm. Int. J. Image Process. 6(1), 635–646 (2012)Google Scholar
  18. 18.
    Peters II, R.E.: A new algorithm for image noise reduction using mathematical morphology. IEEE Trans. Image Process. 4(3), 554–568 (1995)CrossRefGoogle Scholar
  19. 19.
    Phillips, D.: Image Processing in C, 2nd edn. R & D Publications, Lawrence (2000). ISBN 0131945482Google Scholar
  20. 20.
    Vaughan, J., Whyatt, D., Brookes, G.: A parallel implementation of the Douglas Peuker line simplification algorithm. Softw. Pract. Experience 21(3), 331–336 (1991)CrossRefGoogle Scholar
  21. 21.
    Maj, M., Oliferuk, W., Wysocka, O.: Relation between defect depth and standard thermal contrast on the steel surface in pulsed thermography. Pol. Acad. Sci. 3, 25–26 (2002)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Devansh Gaur
    • 1
  • Shalini Saxena
    • 1
  • Dhiraj Sangwan
    • 1
  • Jagdish Lal Raheja
    • 1
  1. 1.Digital System GroupCSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations