Mutual Interaction Study Between DnaK-GroEL-FtSH with Heat Shock Regulator σ32 to Explain Prokaryotic Heat Shock Regulation

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)


Heat shock response in Escherichia coli is mainly controlled by the alternative transcription factor σ32. This response leads to an up-regulation of heat shock proteins including chaperones and proteases. The activity and stability of σ32 is in turn altered through mutual interactions with these heat shock proteins. The work reported here mainly deals with the docking of σ32 with the chaperone GroEL and protease FtsH. The findings of the above studies together with the σ32—DnaK docking study reported earlier suggest that the binding of σ32 with GroEL and DnaK at normal temperature is stronger compared to those at high temperature. With rise in temperature σ32 adopts an open conformation and this probably favors binding with FtsH and renders it for degradation by FtsH.


Heat shock regulation Sigma32 GroEL FtsH DnaK Molecular modeling 



SSR and MP are thankful to the UGC, Govt. of India, for RFSMS and MRP fellowship respectively. Authors duly acknowledge DBT (BT/PR6869/BID/7/417/2012 and Bioinformatics Infrastructural Facility, University of Kalyani), DST (PURSE programme and SR/SO/BB-71/2007) for infrastructural as well as financial support and Mr. Suman K Nandy of Department of Biochemistry and Biophysics and Mr. Rajabrata Bhuyan of BIF, University of Kalyani for their immense help.


  1. 1.
    Morimoto, R.I., Tissieres, A., Georgopoulos, C.: Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Lab. Press, Plainview (1994)Google Scholar
  2. 2.
    Straus, D.B., Walter, W.A., Gross, C.A.: The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329, 348–351 (1987)CrossRefGoogle Scholar
  3. 3.
    Yura, T., Nakahigashi, K.: Regulation of the heat-shock response. Curr. Opin. Microbiol. 2, 153–158 (1999)CrossRefGoogle Scholar
  4. 4.
    Guisbert, E., Herman, C., Lu, C.Z., et al.: A chaperone network controls the heat shock response in E. coli. Genes Dev. 18, 2812–2821 (2004)CrossRefGoogle Scholar
  5. 5.
    Tomoyasu, T., Ogura, T., Tatsuta, T., et al.: Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol. 30, 567–581 (1998)CrossRefGoogle Scholar
  6. 6.
    Gamer, J., Multhaup, G., Tomoyasu, T., et al.: A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J. 15, 607–617 (1996)Google Scholar
  7. 7.
    Tatsuta, T., Tomoyasu, T., Bukau, B., et al.: Heat shock regulation in the FtsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of σ32 in vivo. Mol. Microbiol. 30, 583–593 (1998)CrossRefGoogle Scholar
  8. 8.
    Chattopadhyay, R., Roy, S.: DnaK-σ32 interaction is temperature-dependent. Implication for the mechanism of heat shock response. J. Biol. Chem. 277, 33641–33647 (2002)CrossRefGoogle Scholar
  9. 9.
    Herman, C., Prakash, S., Lu, C.Z., et al.: Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell 11, 659–669 (2003)CrossRefGoogle Scholar
  10. 10.
    Dougan, D.A., Mogk, A., Zeth, K., et al.: AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529, 6–10 (2002)CrossRefGoogle Scholar
  11. 11.
    Guisbert, E., Yura, T., Rhodius, V.A., et al.: Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Micro. Biol. Mol. Biol. Rev. 72, 545–554 (2008)CrossRefGoogle Scholar
  12. 12.
    Roy, S.S., Patra, M., Dasgupta, R., et al.: A structural insight into the prokaryotic heat shock transcription regulatory protein σ32: an implication of σ32-DnaK interaction. Bioinformation 8, 1026–1029 (2012)CrossRefGoogle Scholar
  13. 13.
    Magrane, M., The UniProt Consortium.: UniProt knowledgebase: a hub of integrated protein data. Database, bar009 (2011)Google Scholar
  14. 14.
    Bernstein, F.C., Koetzle, T.F., Williams, G.J., et al.: The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535 (1977)CrossRefGoogle Scholar
  15. 15.
    Altschul, S.F., Gish, W., Miller, W., et al.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)CrossRefGoogle Scholar
  16. 16.
    Bieniossek, C., Schalch, T., Bumann, M., et al.: The molecular architecture of the metalloprotease FtsH. Proc. Natl. Acad. Sci. U. S. A. 103, 3066–3071 (2006)CrossRefGoogle Scholar
  17. 17.
    Laskowski, R.A., Macarthur, M.W., Moss, D.S., et al.: PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)CrossRefGoogle Scholar
  18. 18.
    Lüthy, R., Bowie, J.U., Eisenberg, D.: Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992)CrossRefGoogle Scholar
  19. 19.
    Ramachandran, G.N., Ramkrishnan, C., Sasisekharanan, V.: Conformation of polypeptides and proteins. J. Mol. Biol. 7, 95–99 (1963)CrossRefGoogle Scholar
  20. 20.
    Zhu, X., Zhao, X., Burkholder, W.F., et al.: Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996)CrossRefGoogle Scholar
  21. 21.
    Chaudhry, C., Farr, G.W., Todd, M.J., et al.: Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO J. 22, 4877–4887 (2003)CrossRefGoogle Scholar
  22. 22.
    Comeau, S.R., Gatchell, D.W., Vajda, S., et al.: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45–50 (2004)CrossRefGoogle Scholar
  23. 23.
    Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein docking algorithm. Proteins 52, 80–87 (2003)CrossRefGoogle Scholar
  24. 24.
    van der Spoel, D., Lindahl, E., Hess, B., et al.: Gromacs user manual, version 4.5.4; Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. (2011)
  25. 25.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., et al.: CHARMM: A program for macromolecular energy minimization and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  26. 26.
    Tomoyasu, T., Arsene, F., Ogura, T., et al.: The C terminus of σ32 is not essential for degradation by FtsH. J. Bacteriol. 183, 5911–5917 (2001)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations