A Non-linear Diffusion Based Partial Differential Equation Model for Noise Reduction in Images

  • Subit K. Jain
  • Rajendra K. Ray
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)


To preserve the image features, in this paper we proposed a novel Partial Differential equation model which is based on linear diffusion model, Total-Variation (TV) denoising model and adaptive Perona-Malik (PM) model. This model is constructed by assign a weight parameter, in order to adjust the size of diffusion coefficient. We analyze the performance of the proposed PDE model and demonstrate that our algorithm competes favorably with state of the-art approaches in terms of producing better denoising results.


Image denoising Anisotropic diffusion Variational model Partial differential equations (PDEs) 


  1. 1.
    Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Gonzalez, R.C., Woods, R.E.: Digital image processing (2002)Google Scholar
  3. 3.
    Buades, A., Coll, B., Morel, J.M.: On image denoising methods. CMLA Preprint 5 (2004)Google Scholar
  4. 4.
    Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3), 199–257 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hildreth, E., Marr, D.: Theory of edge detection. Proc. R. Soc. Lond. 207, 187–217 (1980)CrossRefGoogle Scholar
  6. 6.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)Google Scholar
  7. 7.
    Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 826–833 (1992)CrossRefGoogle Scholar
  8. 8.
    Nolen, J.: Partial differential equations and diffusion processes. Technical report, Stanford University, Department of Mathematics (2009)Google Scholar
  9. 9.
    Witkin, A.P.: Scale-space filtering: a new approach to multi-scale description. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’84, vol. 9, pp. 150–153. IEEE (1984)Google Scholar
  10. 10.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  11. 11.
    Weickert, J.: A review of nonlinear diffusion filtering. In: Scale-Space Theory in Computer Vision, pp. 1–28. Springer, Berlin (1997)Google Scholar
  12. 12.
    Weickert, J.: Anisotropic diffusion in image processing, vol. 1. Teubner, Stuttgart (1998)Google Scholar
  13. 13.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, Berlin (2006)Google Scholar
  14. 14.
    Kichenassamy, S.: The Perona–Malik paradox. SIAM J. Appl. Math. 57(5), 1328–1342 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Weickert, J., Benhamouda, B.: A semidiscrete nonlinear scale-space theory and its relation to the peronamalik paradox. In: Advances in Computer Vision, pp. 1–10. Springer, Berlin (1997)Google Scholar
  16. 16.
    Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhang, X., Wang, R., Jiao, L.: Partial differential equation model method based on image feature for denoising. In: 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM), pp. 1–4. IEEE (2011)Google Scholar
  19. 19.
    Yahya, A.A., Tan, J.: A model of image denoising based on the fusion of anisotropic diffusion and total variation models. Int. J. Comput. Sci. Issues 10(3), (2013)Google Scholar
  20. 20.
    Sum, A.K., Cheung, P.Y.: Stabilized anisotropic diffusions. In: IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, ICASSP, vol. 1, pp. I709–I712. United States (2007)Google Scholar
  21. 21.
    Liu, J., Gao, F., Li, Z.: A model of image denoising based on partial differential equations. In: International Conference on Multimedia Technology (ICMT), pp. 1892–1896. IEEE (2011)Google Scholar
  22. 22.
    Kim, H., Calvert, V.R., Kim, S.: Preservation of fine structures in pde-based image denoising. Adv. Numer. Anal. (2012)Google Scholar
  23. 23.
    Guo, Z., Sun, J., Zhang, D., Wu, B.: Adaptive Perona–Malik model based on the variable exponent for image denoising. IEEE Trans. Image Process. 21(3), 958–967 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Thomas, J.W.: Numerical partial differential equations: finite difference methods, vol. 22. Springer, Berlin (1995)Google Scholar
  25. 25.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  26. 26.
    Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. Sig. Process. Mag. IEEE 26(1), 98–117 (2009)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Indian Institute of Technology MandiMandiIndia

Personalised recommendations