Remote Sensing Image Registration Based on Particle Swarm Optimization and Mutual Information

  • Reham Gharbia
  • Sara A. Ahmed
  • Aboul ella Hassanien
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)


The image registration is an indispensable process in remote sensing image processing. The remote sensing registration data is the process of aligning one image to a second image of the same scene that is acquired at the same or at different times by the different or the same sensors. This paper proposes an optimization approach for remote sensing image registration. The approach is proposed for determining pairs of corresponding points between the images, the approach based on the implementation of particle swarm optimization (PSO) used as a function optimizer and mutual information (MI) is used as a similarity measure. The first, Landmarks were chosen manually and used thin plate spline (TPS) to provide a geometric representation for the relative locations of corresponding landmarks. Secondly, MI was used as a cost function to determine the degree of similarity between two images. Finally, PSO was used to improve the correspondence between the landmarks and to maximize MI function.


Remote sensing Image registration Particle swarm optimization Mutual information and image fusion 


  1. 1.
    Qiao, Y., Lelieveldt, B.P.F., Staring, M.: Fast automatic estimation of the optimization step size for nonrigid image registration. SPIE Medical Imaging, International Society for Optics and Photonics (2014)Google Scholar
  2. 2.
    Bouchihaan, R., Besbes, K.: Automatic remote sensing image registration using SURF. Int. J. Comput. Theor. Eng. 5(1), 88–92 (2013)CrossRefGoogle Scholar
  3. 3.
    Ye, Y., Shan, J.: A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences. ISPRS J. Photogrammetry Remote Sens. 90, 83–95 (2014)CrossRefGoogle Scholar
  4. 4.
    Wang, L., Niu, Z., Wu, C., Xie, R., Huang, H.: A robust multisource image automatic registration system based on the SIFT descriptor. Int. J. Remote Sens. 33(12), 3850–3869 (2012)CrossRefGoogle Scholar
  5. 5.
    Hong, G., Zhang, Y.: Wavelet-based image registration technique for high-resolution remote sensing images. Comput. Geosci. 34(12), 1708–1720 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Arora, M., Varshney, P.K.: Mutual information-based image registration for remote sensing data. Int. J. Remote Sens. 24(18), 3701–3706 (2003)CrossRefGoogle Scholar
  7. 7.
    Li, Z., Bao, Z., Li, H., Liao, G.: Image autocoregistration and InSAR interferogram estimation using joint subspace projection. IEEE Trans. Geosci. Remote Sens. 44(2), 288–297 (2006)CrossRefGoogle Scholar
  8. 8.
    Orchard, J.: Efficient least squares multimodal registration with a globally exhaustive alignment search. IEEE Trans. Image Process. 16(10), 2526–2534 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wong, A., Orchard, J.: Efficient FFT-accelerated approach to invariant optical-lidar registration. IEEE Trans. Geosci. Remote Sens. 46(11), 3917–3925 (2008)CrossRefGoogle Scholar
  10. 10.
    Zavorin, I., Le Moigne, J.: Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery. IEEE Trans. Image Process. 14(6), 770–782 (2005)CrossRefGoogle Scholar
  11. 11.
    Liu, J.G., Yan, H.: Phase correlation pixel to pixel image coregistration based on optical flow and median shift propagation. Int. J. Remote Sens. 29(20), 5943–5956 (2008)CrossRefGoogle Scholar
  12. 12.
    Liu, X., Tian, Z., Chai, C., Fu, H.: Multiscale registration of remote sensing image using robust SIFT features in Steerable-Domain. Egypt. J. Remote Sens. Space Sci. 14(2), 63–72 (2011)Google Scholar
  13. 13.
    Wahed, M., El-tawel, G.S., El-karim, A.G.: Automatic image registration technique of remote sensing images. Int. J. Adv. Comput. Sci. Appl. 4(2), 177–187 (2013)Google Scholar
  14. 14.
    Cai, G.R., Jodoin, P.M., Li, S.Z., Wu, Y.D., Su, S.Z., Huang, Z.K.: Perspective-SIFT: an efficient tool for low-altitude remote sensing image registration. Sig. Process. 93(11), 3088–3110 (2013)CrossRefGoogle Scholar
  15. 15.
    Goshtasby, A.: Registration of image with geometric distortion,”. IEEE Trans. Geosci. Remote Sens. 26(1), 60–64 (1988)CrossRefGoogle Scholar
  16. 16.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Patt. Anal. Mach. Intell. 11(6), 567–585 (1989)CrossRefMATHGoogle Scholar
  17. 17.
    Ahmed, S.A., Ghali, N.I.: Optimize the correspondence using particle swarm optimization for medical image registration. In: IEEE 12th International Conference on Hybrid Intelligent Systems (HIS), pp. 80–84 (2012)Google Scholar
  18. 18.
    Mitra, J. Oliver, A., Marti, R., Llado, X., Vilanova, J. and Meriaudeau, F.: A thin-plate spline based multimodal prostate registration with optimal correspondences. In: Proceedings of International Conference on Digital Image Computing, Techniques and Applications, DICTA, Sydney, Australia, pp. 7–11 (2010)Google Scholar
  19. 19.
    Xiao, K., Ho, S.H., Hassanien, A.E.: Brain magnetic resonance image lateral ventricles deformation analysis and tumor prediction. Malays. J. Comput. Sci. 20(2), 115–132 (2007)Google Scholar
  20. 20.
    Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. Int. J. Comput. Vision 24(2), 137–154 (1997)CrossRefGoogle Scholar
  21. 21.
    Wirth, M.A., Narhan, J., Gray, D.W.: Nonrigid mammogram registration using mutual information. In: Medical Imaging 2002, pp. 562–573. International Society for Optics and Photonics (2002)Google Scholar
  22. 22.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4(2), pp. 1942–1948 (1995)Google Scholar
  23. 23.
    Shi, Y.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks Society, vol. 4(13), pp. 1942–1948 (2004)Google Scholar
  24. 24.
    Zhan, Z.H., Zhang, J., Li, Y., Shi, Y.H.: Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15(6), 832–847 (2011)CrossRefGoogle Scholar
  25. 25.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence. The IEEE International Conference, pp. 69–73 (1998)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Reham Gharbia
    • 4
    • 1
  • Sara A. Ahmed
    • 2
    • 4
  • Aboul ella Hassanien
    • 3
    • 4
  1. 1.Nuclear Materials AuthorityCairoEgypt
  2. 2.Faculty of ScienceAl-Azhar UniversityCairoEgypt
  3. 3.Faculty of Computers and InformationCairo UniversityCairoEgypt
  4. 4.Scientific Research Group in Egypt (SRGE)CairoEgypt

Personalised recommendations