Poisson Noise Removal from Mammogram Using Poisson Unbiased Risk Estimation Technique

  • Manas Saha
  • Mrinal Kanti Naskar
  • Biswa Nath Chatterji
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)

Abstract

We present an experimental work on the denoising of mammogram with Poisson noise. Reviewing the literature, it is found that the denoising performance of the multiresolution tools like wavelet, contourlet and curvelet implemented on mammogram with Poisson noise is unique. The first part of the investigation deals with the confirmation of this exceptional performance with our result. The later half implements the recently developed denoising approach called the Poisson Unbiased Risk Estimation-Linear Expansion of Thresholds (PURE-LET) to the Poisson noise corrupted mammogram with an objective to improve the peak signal to noise ratio (PSNR) further. The PURE-LET successfully removes Poisson noise better than the traditional mathematical transforms already mentioned. The computation time and PSNR are also evaluated in the perspective of the cycle spinning technique. This validates the applicability and efficiency of the novel denoising strategy in the field of digital mammography.

Keywords

Multiresolution Wavelet transform Curvelet transform Contourlet transform Singularities 

References

  1. 1.
    Naveed, N., Hussain, A., Arfan, M.J., Choi, T.S.: Quantum and impulse noise filtering from breast mammogram images. Comput. Methods Programs Biomed. 108(3), 1062–1069 (2012)CrossRefGoogle Scholar
  2. 2.
    Görgel, P., Sertbas, A., Ucan, O.N.: A wavelet-based mammographic image denoising and enhancement with homomorphic filtering. J. Med. Syst. 34(6), 993–1002 (2010)CrossRefGoogle Scholar
  3. 3.
    Mencattini, A., Rabottino, G., Salmeri, M., Lojacono, R.: Denoising and enhancement of mammographic images under the assumption of heteroscedastic additive noise by an optimal subband thresholding. Int. J. Wavelets Multiresolut. Inf. Process. 8(5), 713–774 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Görgel, P., Sertbas, A., Ucan, O.N.: Mammographical mass detection and classification using local seed region growing-spherical wavelet transform (LSRG-SWT) hybrid scheme. Comput. Biol. Med. 43(6), 765–774 (2013)CrossRefGoogle Scholar
  5. 5.
    Eltoukhy, M.M., Faye, I., Samir, B.B.: A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput. Biol. Med. 40(4), 384–391 (2010)CrossRefGoogle Scholar
  6. 6.
    Malar, E., Kandaswamy, A., Kirthana, S.S., Nivedhtha, D., Gauthaam, M.: Curvelet image denoising of mammogram images. Int. J. Med. Eng. Inf. 5(1), 60–67 (2013)Google Scholar
  7. 7.
    Malar, E., Kandaswamy, A., Kirthana, S.S., Nivedhitha, D.: A comparative study on mammographic image denoising technique using wavelet, curvelet and contourlet transforms. In: International Conference on Machine Vision and Image Processing (MVIP), pp. 65-68, Taipei, Taiwan (2012)Google Scholar
  8. 8.
    Luisier, F., Vonesch, C., Blu, T., Unser, M.: Fast interscale wavelet denoising of Poisson–corrupted images. Sig. Process. 90, 415–427 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Makitalo, M., Foi, A.: Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans. Image Process. 22(1) 91–103, (2012)Google Scholar
  10. 10.
    Makitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson Image denoising. IEEE Trans. Image Process. 20(1) 99–109, (2010)Google Scholar
  11. 11.
    Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure Appl. Math. 57, 219–266 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Palakkal, S., Prabhu, K.M.M.: Poisson noise removal from images using the fast discrete curvelet transform. In: National Conference on Communications (NCC), pp. 1–5, Bangalore (2011)Google Scholar
  13. 13.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)CrossRefGoogle Scholar
  15. 15.
    Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: theory and design. IEEE Trans. Signal Process. 40(4), 882–893 (1992)CrossRefGoogle Scholar
  16. 16.
    Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEE Trans. Image Process. 16(11), 2778–2786 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luiser, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. 20(3), 696–708 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ying, L., Demanet, L., Candes, E.: 3D discrete curvelet transform. SPIE 5914, 351–361 (2005)Google Scholar
  19. 19.
  20. 20.
    Curvelet Toolbox: http://www.curvelet.org
  21. 21.
  22. 22.
    Suckling, J., Parker, J., Dance, D.R., Astley, S.M., Hutt, I., Boggis, C.R.M., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S.L., Taylor, P., Betal, D., Savage, J.: The mammographic image analysis society digital mammogram database. In: International Workshop on Digital Mammography, pp. 211–221, York, UK (1994)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Manas Saha
    • 1
  • Mrinal Kanti Naskar
    • 2
  • Biswa Nath Chatterji
    • 3
  1. 1.Department of Electronics and Communication EngineeringSiliguri Institute of TechnologySiliguriIndia
  2. 2.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia
  3. 3.Department of Electronics and Communication EngineeringB.P. Poddar Institute of Management and TechnologyKolkataIndia

Personalised recommendations