A Real Time Gesture Recognition with Wrist Mounted Accelerometer

  • Debjyoti Chowdhury
  • Soumya Jyoti Banerjee
  • Krishnendu Sanyal
  • Madhurima Chattopadhyay
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 340)

Abstract

This paper presents an acceleration based gesture recognition approach with wearable MEMS tri-axial accelerometer. In the application model, we have introduced frame based lookup table for gesture recognition. In accelerometer based gesture recognition concept, sensor data calibration plays an important aspect owing to their erroneous output due to zero-G error. In this work six-point based calibration of the sensor data is presented. The calibrated acceleration data so obtained from the sensor is represented in the form of frame-based signifier, to extract discriminative gesture information. It is observed that this procedure is always advantageous over conventional video image processing based gesture recognition that uses cameras and bulky computational algorithms. Thus, this accelerometer based gesture recognition not only reduces the hardware complexity but also minimizes the consumption of power by associated circuitry. Finally, this study helps us to develop a real time implementation of wearable gesture recognition device.

Keywords

Gesture recognition ADXL345 MEMS Mobile application Wearable device Six-point optimization 

References

  1. 1.
    Montoliu, R., Blom, J., Gatica-Perez, D.: Discovering places of interest in everyday life from smartphone data. Multimed Tools Appl. 62(1), 179–307 (2013)CrossRefGoogle Scholar
  2. 2.
    Hürst, W., van Wezel, C.: Gesture-based interaction via finger tracking for mobile augmented reality. Multimed Tools Appl. 62(1), 233–258 (2012)CrossRefGoogle Scholar
  3. 3.
    Holzinger, A., Softic, S., Stickel, C., Ebner, M., Debevc, M., Hu, B.: Nintendo Wii remote controller in higher education: development and evaluation of a demonstrator kit for e-teaching. Comput. Inform. 29(4), 601–615 (2012)Google Scholar
  4. 4.
    Dong, Z., Wejinya, U.C., Li, W.J.: An optical-tracking calibration method for MEMS-based digital writing instrument. IEEE Sens. J. 10(10), 1543–1551 (2010)Google Scholar
  5. 5.
    Wang, J.S., Hsu, Y.L., Liu, J.N.: An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications. IEEE Trans. Ind. Electron. 57(10), 3508–3521 (2010)Google Scholar
  6. 6.
    Schlömer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a Wii controller. In: International Conference on Tangible and Embedded Interaction (TEI 2008), pp. 11–14. Bonn, 18–20 Feb 2008Google Scholar
  7. 7.
    Xu, R., Zhou, S., Li, W.J.: MEMS accelerometer based nonspecific-user hand gesture recognition. IEEE Sens. J. 12(5), 1166–1173 (2012)Google Scholar
  8. 8.
    Sawada, H., Hashimoto, S.: Gesture recognition using an accelerometer sensor and its application to musical performance control. Electron. Commun. Jpn. Part 3, 9–17 (2000)Google Scholar
  9. 9.
    Mäntylä, V.-M., Mäntyjärvi, J., Seppänen, T., Tuulari, E.: Hand gesture recognition of a mobile device user. In: Proceedings of the International IEEE Conference on Multimedia and Expo., pp. 281–284 (2000)Google Scholar
  10. 10.
    Mäntyjärvi, J., Kela, J., Korpipää, P., Kallio, S.: Enabling fast and effortless customization in accelerometer based gesture interaction. In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia (MUM 2004), pp. 25–31. ACM Press, New York, 27–29 Oct (2004)Google Scholar
  11. 11.
    Mäntylä, V.-M.: Discrete Hidden Markov Models with Application to Isolated User- Dependent Hand Gesture Recognition. VTT publications, Finland (2001)Google Scholar
  12. 12.
    Pei, M., Jia, Y., Zhu, S.C.: Parsing video events with goal inference and intent prediction. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 487–494. IEEE, New York (2011)Google Scholar
  13. 13.
    Ravi, N., Dandekar, N., Musore, P., Littman, M.: Activity recognition from accelerometer data. In: Proceedings of IAAI 2008, pp. 11–18 (2005)Google Scholar
  14. 14.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2) (2005)Google Scholar
  15. 15.
    Takahashi, M., Fujii, M., Naemura, M., Satoh, S.: Human gesture recognition system for tv viewing using time-of-flight camera. Multimed Tools Appl. 62(3), 761–783 (2013)CrossRefGoogle Scholar
  16. 16.
    Christanini, J., Taylor, J.S.: An Introduction to Support Vector Machines and Other Kernel Based Methods. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  17. 17.
    Mitra, S., Acharya, T.: Gesture Recognition: a survey. IEEE Trans. Syst. Man, Cybern. Part C 37(3), 311–324 (2007)Google Scholar
  18. 18.
    Wang, D., Xiong, Z., Zhang, M.: An application oriented and shape feature based multi-touch gesture description and recognition method. Multimed Tools Appl. 58(3), 497–519 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)CrossRefGoogle Scholar
  20. 20.
    Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 130–136 (1997)Google Scholar
  21. 21.
    Cho, S.-J., Choi, E., Bang, W.-C., Yang, J., Sohn, J., Kim, D.Y., Lee, Y.-B., Kim, S.: Twostage recognition of raw acceleration signals for 3D-gesture-understanding cell phones. In: 10th International Workshop on Frontiers in Handwriting Recognition (2006)Google Scholar
  22. 22.
    Niezen, G., Hancke, G.P.: Gesture recognition as ubiquitous input for mobile phones. In: International Workshop on Devices that Alter Perception (DAP 2008), conjunction with Ubicomp 2008 (2008)Google Scholar
  23. 23.
    Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer based personalized gesture recognition and its applications. In: IEEE PerCom 2009 (2009)Google Scholar
  24. 24.
    Peng, X., Bennamoun, M., Mian, A.S.: A training-free nose tip detection method from face range images. Pattern Recogn. 44(3), 544–558 (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Debjyoti Chowdhury
    • 1
  • Soumya Jyoti Banerjee
    • 2
  • Krishnendu Sanyal
    • 3
  • Madhurima Chattopadhyay
    • 1
  1. 1.Heritage Institute of TechnologyKolkataIndia
  2. 2.Cisco IncBangaloreIndia
  3. 3.WiproKolkataIndia

Personalised recommendations